Home
Class 11
PHYSICS
if axxb = bxxc != 0 with a != -c then sh...

if `axxb = bxxc != 0` with a `!= -c` then show that a+c = kb, where k is scalar.

Text Solution

AI Generated Solution

To solve the problem, we need to show that if \( \mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \neq 0 \) and \( \mathbf{a} \neq -\mathbf{c} \), then \( \mathbf{a} + \mathbf{c} = k\mathbf{b} \) for some scalar \( k \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \] ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If vec axx vec b= vec bxx vec c!=0 , then show that vec a+ vec c=m vec b , where m is any scalar.

If vec axx vec b= vec bxx vec c!=0,\ then show that vec a+ vec c=m vec b ,\ w h e r e\ m is any scalar.

If a=c, show that cba-abc=0

If axxb=bxxc ne0 , then the correct statement is

If a, b, c ∈ R, a ≠ 0 and the quadratic equation ax^2 + bx + c = 0 has no real root, then show that (a + b + c) c > 0

If a'=(bxxc)/(["a b c"]),b'=(cxxa)/(["a b c"]),c'=(axxb)/(["a b c"]) then show that axxa'+bxxb'+cxxc'=0 , where a,b and c are non-coplanar.

If vec axx vec b= vec axx vec c , vec a!= vec0a n d vec b!= vec c , show that vec b= vec c+t vec a for some scalar tdot

If A is a skew-symmetric, then kA is a...........(where, k is any scalar) .

Let A be an nth-order square matrix and B be its adjoint, then |A B+K I_n| is (where K is a scalar quantity) a. (|A|+K)^(n-2) b. (|A|+K)^n c. (|A|+K)^(n-1) d. none of these

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot