Home
Class 11
PHYSICS
vecA=2hati+hatj,B=3hatj-hatk and vecC=6h...

`vecA=2hati+hatj`,`B=3hatj-hatk` and `vecC=6hati-2hatk`.
value of `vecA-2vecB+3vecC` would be

A

`20hati+5hatj+4hatk`

B

`20hati-5hatj-4hatk`

C

`4hati+5hatj+20hatk`

D

`5hati+4hatj+10hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \( \vec{A} - 2\vec{B} + 3\vec{C} \) using the given vectors: 1. **Given Vectors:** - \( \vec{A} = 2\hat{i} + \hat{j} \) - \( \vec{B} = 3\hat{j} - \hat{k} \) - \( \vec{C} = 6\hat{i} - 2\hat{k} \) 2. **Substituting the Vectors:** We substitute the vectors into the expression: \[ \vec{A} - 2\vec{B} + 3\vec{C} = (2\hat{i} + \hat{j}) - 2(3\hat{j} - \hat{k}) + 3(6\hat{i} - 2\hat{k}) \] 3. **Calculating \( -2\vec{B} \):** \[ -2\vec{B} = -2(3\hat{j} - \hat{k}) = -6\hat{j} + 2\hat{k} \] 4. **Calculating \( 3\vec{C} \):** \[ 3\vec{C} = 3(6\hat{i} - 2\hat{k}) = 18\hat{i} - 6\hat{k} \] 5. **Combining All Parts:** Now we combine all parts: \[ \vec{A} - 2\vec{B} + 3\vec{C} = (2\hat{i} + \hat{j}) + (-6\hat{j} + 2\hat{k}) + (18\hat{i} - 6\hat{k}) \] 6. **Grouping Like Terms:** - For \( \hat{i} \): \( 2\hat{i} + 18\hat{i} = 20\hat{i} \) - For \( \hat{j} \): \( \hat{j} - 6\hat{j} = -5\hat{j} \) - For \( \hat{k} \): \( 2\hat{k} - 6\hat{k} = -4\hat{k} \) 7. **Final Result:** Combining these results, we get: \[ \vec{A} - 2\vec{B} + 3\vec{C} = 20\hat{i} - 5\hat{j} - 4\hat{k} \] Thus, the final answer is: \[ \vec{A} - 2\vec{B} + 3\vec{C} = 20\hat{i} - 5\hat{j} - 4\hat{k} \]

To solve the problem, we need to compute the expression \( \vec{A} - 2\vec{B} + 3\vec{C} \) using the given vectors: 1. **Given Vectors:** - \( \vec{A} = 2\hat{i} + \hat{j} \) - \( \vec{B} = 3\hat{j} - \hat{k} \) - \( \vec{C} = 6\hat{i} - 2\hat{k} \) 2. **Substituting the Vectors:** ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If vecA=2hati-3hatj+hatk and vecB=3hati+2hatj. Find vecA.vecB and vecAxxvecB

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk , then value of |vecA X vecB| will be

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=hati+4hatj+2hatk,vecb=3hati-2hatj+7hatk and vecc=2hati-2hatj+4hatk . Find a vector vecd which perpendicular to both veca and vecb and vecc.vecd=15 .

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=