Home
Class 11
PHYSICS
If A and B are two vectors such that |A+...

If A and B are two vectors such that |A+B|=2|A-B|. The angle between vectors A and B is

A

`45^(@)`

B

`60^(@)`

C

`30^(@)`

D

data insuffcient

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between two vectors \( \vec{A} \) and \( \vec{B} \) given the condition that \( |\vec{A} + \vec{B}| = 2 |\vec{A} - \vec{B}| \). ### Step-by-Step Solution: 1. **Write down the given equation**: \[ |\vec{A} + \vec{B}| = 2 |\vec{A} - \vec{B}| \] 2. **Square both sides** to eliminate the square root: \[ |\vec{A} + \vec{B}|^2 = 4 |\vec{A} - \vec{B}|^2 \] 3. **Use the formula for the magnitude of a vector**: \[ |\vec{A} + \vec{B}|^2 = \vec{A} \cdot \vec{A} + \vec{B} \cdot \vec{B} + 2 \vec{A} \cdot \vec{B} \] \[ |\vec{A} - \vec{B}|^2 = \vec{A} \cdot \vec{A} + \vec{B} \cdot \vec{B} - 2 \vec{A} \cdot \vec{B} \] 4. **Substituting these into the equation**: \[ \vec{A} \cdot \vec{A} + \vec{B} \cdot \vec{B} + 2 \vec{A} \cdot \vec{B} = 4 \left( \vec{A} \cdot \vec{A} + \vec{B} \cdot \vec{B} - 2 \vec{A} \cdot \vec{B} \right) \] 5. **Expand the right-hand side**: \[ \vec{A}^2 + \vec{B}^2 + 2 \vec{A} \cdot \vec{B} = 4 \vec{A}^2 + 4 \vec{B}^2 - 8 \vec{A} \cdot \vec{B} \] 6. **Rearranging the equation**: \[ 0 = 4 \vec{A}^2 + 4 \vec{B}^2 - 8 \vec{A} \cdot \vec{B} - \vec{A}^2 - \vec{B}^2 - 2 \vec{A} \cdot \vec{B} \] \[ 0 = 3 \vec{A}^2 + 3 \vec{B}^2 - 10 \vec{A} \cdot \vec{B} \] 7. **Dividing the whole equation by 3**: \[ 0 = \vec{A}^2 + \vec{B}^2 - \frac{10}{3} \vec{A} \cdot \vec{B} \] 8. **Using the dot product in terms of the angle**: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \] Substitute this into the equation: \[ 0 = |\vec{A}|^2 + |\vec{B}|^2 - \frac{10}{3} |\vec{A}| |\vec{B}| \cos \theta \] 9. **Rearranging for \( \cos \theta \)**: \[ \frac{10}{3} |\vec{A}| |\vec{B}| \cos \theta = |\vec{A}|^2 + |\vec{B}|^2 \] \[ \cos \theta = \frac{3 (|\vec{A}|^2 + |\vec{B}|^2)}{10 |\vec{A}| |\vec{B}|} \] 10. **Finding the angle \( \theta \)**: Since the specific magnitudes of \( |\vec{A}| \) and \( |\vec{B}| \) are not provided, we cannot determine a specific numerical value for \( \theta \). Therefore, we conclude that the data is insufficient to find a unique angle. ### Conclusion: The angle between vectors \( \vec{A} \) and \( \vec{B} \) cannot be determined uniquely with the given information, hence the correct option is **data insufficient**.

To solve the problem, we need to find the angle between two vectors \( \vec{A} \) and \( \vec{B} \) given the condition that \( |\vec{A} + \vec{B}| = 2 |\vec{A} - \vec{B}| \). ### Step-by-Step Solution: 1. **Write down the given equation**: \[ |\vec{A} + \vec{B}| = 2 |\vec{A} - \vec{B}| \] ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

vecA and vecB are vectors such that A +BI= I A -B j. Then, the angle between them is

If vec a and vec b are unit Vectors, then what is the angle between vec a and vec b so that sqrt(2) vec a- vec b is a unit vector?

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

Let A,B and C be the unit vectors . Suppose that A.B=A.C =0 and the angle between B and C is (pi)/(6) then prove that A = +-2(BxxC)

Let A,B and C be the unit vectors . Suppose that A.B=A.C =0 and the angle between B and C is (pi)/(6) then prove that A = +-2(BxxC)

If vec a\ a n d\ vec b are two vectors such that | vec a|=| vec axx vec b|, write the angle between vec a\ a n d\ vec bdot

A=4i+4j-4k and B=3i+j +4k , then angle between vectors A and B is

If A and B are Two non -zero vector having equal magnitude , the angle between the vector A and A-B is

If vec a and vec b are two vectors such that | vec a|=4,| vec b|=3 and vec a . vec b=6 . Find the angle between vec a and vec b .

The resultant of two vectors A and B is perpendicular to the vector A and its magnitude is equal to half the magnitude of vector B. The angle between A and B is -