Home
Class 11
PHYSICS
If |AxxB| = sqrt3 A.B, then the value of...

If `|AxxB| = sqrt3 A.B,` then the value of |A+B| is

A

`(A^(2)+B^(2)+(AB)/(sqrt(3)))^(1//2)`

B

A+B

C

`(A^(2)+B^(2)+sqrt(3)AB)^(1//2)`

D

`(A^(2)+B^(2)+AB)^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ |A \times B| = \sqrt{3} A \cdot B \] ### Step 1: Understand the Cross Product and Dot Product The magnitude of the cross product \( |A \times B| \) can be expressed as: \[ |A \times B| = |A| |B| \sin \theta \] where \( \theta \) is the angle between the vectors \( A \) and \( B \). The dot product \( A \cdot B \) is given by: \[ A \cdot B = |A| |B| \cos \theta \] ### Step 2: Substitute into the Given Equation Substituting the expressions for the magnitudes into the given equation: \[ |A| |B| \sin \theta = \sqrt{3} |A| |B| \cos \theta \] Assuming \( |A| \) and \( |B| \) are not zero, we can divide both sides by \( |A| |B| \): \[ \sin \theta = \sqrt{3} \cos \theta \] ### Step 3: Use the Tangent Function Dividing both sides by \( \cos \theta \): \[ \tan \theta = \sqrt{3} \] ### Step 4: Determine the Angle From trigonometric values, we know: \[ \theta = \frac{\pi}{3} \text{ or } 60^\circ \] ### Step 5: Calculate the Magnitude of \( |A + B| \) Now, we can find the magnitude of the sum of the vectors \( A \) and \( B \) using the formula: \[ |A + B| = \sqrt{|A|^2 + |B|^2 + 2 |A| |B| \cos \theta} \] ### Step 6: Substitute the Known Values Substituting \( \cos \theta = \cos 60^\circ = \frac{1}{2} \): \[ |A + B| = \sqrt{|A|^2 + |B|^2 + 2 |A| |B| \cdot \frac{1}{2}} \] This simplifies to: \[ |A + B| = \sqrt{|A|^2 + |B|^2 + |A| |B|} \] ### Final Step: Write the Final Expression Thus, the final expression for \( |A + B| \) is: \[ |A + B| = \sqrt{|A|^2 + |B|^2 + |A| |B|} \] ### Conclusion The correct answer is: \[ \sqrt{A^2 + B^2 + AB} \]

To solve the problem, we start with the given equation: \[ |A \times B| = \sqrt{3} A \cdot B \] ### Step 1: Understand the Cross Product and Dot Product The magnitude of the cross product \( |A \times B| \) can be expressed as: ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A + tan B + tan C is

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A tan B tanC is

If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sqrt(x^(2)+2)))+c. then the value of 3AB is

If A+B=90^(@)andtanA=sqrt(3) , then find the value of B.

If 2 cos (A-B) = 2 sin ( A+ B) = sqrt3 find the value of acute angles A and B .

In a triangle ABC, angle A = 60^(@) and b : c = (sqrt3 + 1) : 2 , then find the value of (angle B - angle C)

If sin A=sqrt3/2 and cos B = sqrt3/2 , find the value of : (tanA-tanB)/(1+tanAtanB)

If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2AB^(-1)=3A^(-1)B , then the value of (|B|^(2))/(16) is equal to

If A-B=30^(@)andsinA=(sqrt(3))/(2) ,then find the value of B.

The angles of DeltaABC are in A.P. If a:b=sqrt(2):sqrt(3) , find the value of angleA .