Home
Class 11
PHYSICS
Find the torque of a force vecF=-3hati+2...

Find the torque of a force `vecF=-3hati+2hatj+hatk` acting at the point `vecr=8hati+2hatj+3hatk` about origin

A

`14hati--38hatj+16hatk`

B

`4hati+4hatj+6hatk`

C

`-14hati+38hatj-16hatk`

D

`-4hati+17hatj-22hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque \( \vec{\tau} \) of a force \( \vec{F} \) acting at a point \( \vec{r} \) about the origin, we can use the formula: \[ \vec{\tau} = \vec{r} \times \vec{F} \] where \( \times \) denotes the cross product. Given: - \( \vec{F} = -3 \hat{i} + 2 \hat{j} + 1 \hat{k} \) - \( \vec{r} = 8 \hat{i} + 2 \hat{j} + 3 \hat{k} \) ### Step 1: Set up the cross product We will set up the cross product using the determinant form: \[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 8 & 2 & 3 \\ -3 & 2 & 1 \end{vmatrix} \] ### Step 2: Calculate the determinant To calculate the determinant, we can expand it as follows: \[ \vec{\tau} = \hat{i} \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 8 & 3 \\ -3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 8 & 2 \\ -3 & 2 \end{vmatrix} \] ### Step 3: Calculate the individual 2x2 determinants 1. For \( \hat{i} \): \[ \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} = (2 \cdot 1) - (3 \cdot 2) = 2 - 6 = -4 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 8 & 3 \\ -3 & 1 \end{vmatrix} = (8 \cdot 1) - (3 \cdot -3) = 8 + 9 = 17 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 8 & 2 \\ -3 & 2 \end{vmatrix} = (8 \cdot 2) - (2 \cdot -3) = 16 + 6 = 22 \] ### Step 4: Substitute back into the torque equation Now substituting back into the torque equation: \[ \vec{\tau} = -4 \hat{i} - 17 \hat{j} + 22 \hat{k} \] ### Step 5: Write the final answer Thus, the torque \( \vec{\tau} \) is: \[ \vec{\tau} = -4 \hat{i} - 17 \hat{j} + 22 \hat{k} \]

To find the torque \( \vec{\tau} \) of a force \( \vec{F} \) acting at a point \( \vec{r} \) about the origin, we can use the formula: \[ \vec{\tau} = \vec{r} \times \vec{F} \] where \( \times \) denotes the cross product. ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Find the torque of a force vecF= -3hati+hatj+5hatk acting at the point vecr=7hati+3hatj+hatk

Find the torque of a force vecF=2hati+hatj+4hatk acting at the point vecr=7hati+3hatj+hatk :

The torpue of force vecF=-2hati+2hatj+3hatk acting on a point vecr=hati-2hatj+hatk about origin will be :

What is the torque of the force vecF=(2hati+3hatj+4hatk)N acting at the point vecr=(2hati+3hatj+4hatk)m about the origin? (Note: Tortue, vectau=vecrxxvecF )

The torque of force F =(2hati-3hatj+4hatk) newton acting at the point r=(3hati+2hatj+3hatk) metre about origin is (in N-m)

Find the torque (vectau=vecrxxvecF) of a force vecF=-3hati+hatj+3hatk acting at the point vecr=7hati+3hatj+hatk

Find the torque of a force F=a(hati+2hatj+3hatk) N about a point O. The position vector of point of application of force about O is r=(2hati+3hatj-hatk) m .

Find the torque of a force (7 hati + 3hatj - 5hatk) about the origin. The force acts on a particle whose position vector is (hati - hatj + hatk) .

The position vector of a point is (3hati-2hatj+6hatk)m . The i^(th) component of torque of force (2hati+3hatj-6hatk)N acting at the point about origin in (Nm) is

The work done by the forces vecF = 2hati - hatj -hatk in moving an object along the vectors 3hati + 2hatj - 5hatk is: