Home
Class 11
PHYSICS
What is the unit vector perpendicular to...

What is the unit vector perpendicular to the following vectors `2hati+2hatj-hatk` and `6hati-3hatj+2hatk`

A

`(hati+10hatj-18hatk)/(5sqrt(17))`

B

`(hati-10hatj+18hatk)/(5sqrt(17))`

C

`(hati-10hatj-18hatk)/(5sqrt(17))`

D

`(hati+10hatj+18hatk)/(5sqrt(17))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector that is perpendicular to the vectors \( \mathbf{A} = 2\hat{i} + 2\hat{j} - \hat{k} \) and \( \mathbf{B} = 6\hat{i} - 3\hat{j} + 2\hat{k} \), we can follow these steps: ### Step 1: Write down the vectors We have: \[ \mathbf{A} = 2\hat{i} + 2\hat{j} - \hat{k} \] \[ \mathbf{B} = 6\hat{i} - 3\hat{j} + 2\hat{k} \] ### Step 2: Calculate the cross product The cross product \( \mathbf{A} \times \mathbf{B} \) can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of \( \mathbf{A} \) and \( \mathbf{B} \). \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & -1 \\ 6 & -3 & 2 \end{vmatrix} \] ### Step 3: Calculate the determinant Calculating the determinant gives: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 2 & -1 \\ -3 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 6 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 2 \\ 6 & -3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 2 & -1 \\ -3 & 2 \end{vmatrix} = (2)(2) - (-1)(-3) = 4 - 3 = 1 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 2 & -1 \\ 6 & 2 \end{vmatrix} = (2)(2) - (-1)(6) = 4 + 6 = 10 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 2 & 2 \\ 6 & -3 \end{vmatrix} = (2)(-3) - (2)(6) = -6 - 12 = -18 \] Putting it all together: \[ \mathbf{A} \times \mathbf{B} = \hat{i}(1) - \hat{j}(10) + \hat{k}(-18) = \hat{i} - 10\hat{j} - 18\hat{k} \] ### Step 4: Resultant vector Thus, the resultant vector perpendicular to both \( \mathbf{A} \) and \( \mathbf{B} \) is: \[ \mathbf{R} = \hat{i} - 10\hat{j} - 18\hat{k} \] ### Step 5: Calculate the magnitude of the resultant vector The magnitude of \( \mathbf{R} \) is given by: \[ |\mathbf{R}| = \sqrt{(1)^2 + (-10)^2 + (-18)^2} = \sqrt{1 + 100 + 324} = \sqrt{425} = 5\sqrt{17} \] ### Step 6: Find the unit vector The unit vector \( \hat{r} \) in the direction of \( \mathbf{R} \) is given by: \[ \hat{r} = \frac{\mathbf{R}}{|\mathbf{R}|} = \frac{\hat{i} - 10\hat{j} - 18\hat{k}}{5\sqrt{17}} \] ### Final Answer Thus, the unit vector perpendicular to the given vectors is: \[ \hat{r} = \frac{1}{5\sqrt{17}} \hat{i} - \frac{10}{5\sqrt{17}} \hat{j} - \frac{18}{5\sqrt{17}} \hat{k} \]

To find the unit vector that is perpendicular to the vectors \( \mathbf{A} = 2\hat{i} + 2\hat{j} - \hat{k} \) and \( \mathbf{B} = 6\hat{i} - 3\hat{j} + 2\hat{k} \), we can follow these steps: ### Step 1: Write down the vectors We have: \[ \mathbf{A} = 2\hat{i} + 2\hat{j} - \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

What is the unit vector perpendicular to each of the vectors 2hati-hatj+hatk and 3hati+4hatj-hatk ? Prove that the sine of the angle between these two vectors is sqrt(155/156)

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

If the magnitude of the projection of the vector hati-hatj+2hatk on the vector perpendicular to the plane containing the vectors 2hati+hatj+3hatk and hati-hatj-2hatk is k, then the value of (1)/(k^(2)) is equal to

Find the unit vector perpendicular to the vectors vecA=(hati+2hatj-3hatk)andvecB=(-hati+hatj-hatk)

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

Find the scalar components of a unit vector which is perpendicular to each of the vectors hati+2hatj-hatk and 3hati-hatj+2hatk .