Home
Class 11
PHYSICS
What is the value of linear velocity, if...

What is the value of linear velocity, if `vecomega=3hati-4hatj+hatk` and `vecr=5hati-6hatj+6hatk`?

Text Solution

AI Generated Solution

The correct Answer is:
To find the linear velocity \( \vec{v} \) given \( \vec{\omega} = 3\hat{i} - 4\hat{j} + \hat{k} \) and \( \vec{r} = 5\hat{i} - 6\hat{j} + 6\hat{k} \), we will use the formula: \[ \vec{v} = \vec{\omega} \times \vec{r} \] ### Step 1: Set up the determinant for the cross product We can express the cross product using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of \( \vec{\omega} \) and \( \vec{r} \). \[ \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & 1 \\ 5 & -6 & 6 \end{vmatrix} \] ### Step 2: Calculate the determinant To calculate the determinant, we expand it as follows: \[ \vec{v} = \hat{i} \begin{vmatrix} -4 & 1 \\ -6 & 6 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ 5 & 6 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix} \] ### Step 3: Calculate each of the 2x2 determinants 1. For \( \hat{i} \): \[ \begin{vmatrix} -4 & 1 \\ -6 & 6 \end{vmatrix} = (-4)(6) - (1)(-6) = -24 + 6 = -18 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 3 & 1 \\ 5 & 6 \end{vmatrix} = (3)(6) - (1)(5) = 18 - 5 = 13 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix} = (3)(-6) - (-4)(5) = -18 + 20 = 2 \] ### Step 4: Combine the results Now substituting back into the expression for \( \vec{v} \): \[ \vec{v} = -18\hat{i} - 13\hat{j} + 2\hat{k} \] ### Final Result Thus, the linear velocity \( \vec{v} \) is: \[ \vec{v} = -18\hat{i} - 13\hat{j} + 2\hat{k} \] ---

To find the linear velocity \( \vec{v} \) given \( \vec{\omega} = 3\hat{i} - 4\hat{j} + \hat{k} \) and \( \vec{r} = 5\hat{i} - 6\hat{j} + 6\hat{k} \), we will use the formula: \[ \vec{v} = \vec{\omega} \times \vec{r} \] ### Step 1: Set up the determinant for the cross product We can express the cross product using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of \( \vec{\omega} \) and \( \vec{r} \). ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

What is the value of linear veloctity, if vecomega =hati-hatj+hatk and vecr=hati+2hatj+3hatk

For a body, angular velocity vecomega= hati-2hatj+3hatk and radius vector vecr=hati+hatj+hatk , then its velocity (vecv= vecomega xx vecr) is :

(i) Find the sum of vectors veca=hati-2hatj+hatk , vecb=-2hati+4hatj+5hatk , and vecc=hati-hatj-7hatk (ii) Find the magnitude of the vector veca=3hati-2hatj+6hatk .

Find the line of intersection of the planes vecr.(3hati-hatj+hatk)=1 and vecr.(hati+4hatj-2hatk)=2

The vector parallel to the line of intersection of the planes vecr.(3hati-hatj+hatk) = 1 and vecr.(hati+4hatj-2hatk)=2 is :

Find the equation of the plane through the point hati+4hatj-2hatk and perpendicular to the line of intersection of the planes vecr.(hati+hatj+hatk)=10 and vecr.(2hati-hatj+3hatk)=18.

Find the angle between the vectors 4hati-2hatj+4hatk and 3hati-6hatj-2hatk.

The linear velocity of rotating body is given by vecv = vecomega xx vecr where vecomega is the angular velocity and vecr is the radius vector. The angular velocity of body vecomega = hati - 2hatj + 2hatk and this radius vector vecr = 4hatj - 3hatk , then |vecv| is

Unit vector perpnicular to vector A=-3hati-2hatj -3hatk and 2hati + 4hatj +6hatk is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|