Home
Class 11
PHYSICS
The expression (1/(sqrt(2))hat(i)+1/(sqr...

The expression `(1/(sqrt(2))hat(i)+1/(sqrt(2))hat(j))` is a

A

unit vector

B

unll vector

C

vector of magnitude`sqrt(2)`

D

Scalar

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the expression \((\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j})\), we will analyze it step by step. ### Step 1: Identify the components of the vector The expression consists of two components: - The \(\hat{i}\) component is \(\frac{1}{\sqrt{2}}\). - The \(\hat{j}\) component is \(\frac{1}{\sqrt{2}}\). ### Step 2: Calculate the magnitude of the vector The magnitude \( |V| \) of a vector \( V = a \hat{i} + b \hat{j} \) is given by the formula: \[ |V| = \sqrt{a^2 + b^2} \] In our case, \( a = \frac{1}{\sqrt{2}} \) and \( b = \frac{1}{\sqrt{2}} \). Substituting these values into the formula: \[ |V| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} \] ### Step 3: Simplify the expression Calculating the squares: \[ |V| = \sqrt{\frac{1}{2} + \frac{1}{2}} = \sqrt{1} \] ### Step 4: Conclude the magnitude Thus, the magnitude of the vector is: \[ |V| = 1 \] ### Step 5: Determine the type of vector A vector is classified as a unit vector if its magnitude is equal to 1. Since we have found that the magnitude of the vector is 1, we conclude that: \[ \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} \text{ is a unit vector.} \] ### Final Answer The expression \((\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j})\) is a **unit vector**. ---

To determine the nature of the expression \((\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j})\), we will analyze it step by step. ### Step 1: Identify the components of the vector The expression consists of two components: - The \(\hat{i}\) component is \(\frac{1}{\sqrt{2}}\). - The \(\hat{j}\) component is \(\frac{1}{\sqrt{2}}\). ### Step 2: Calculate the magnitude of the vector ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Compute the magnitude of the following vectors: veca= hat i+ hat j+ hat k ; vecb=2 hat i-7 hat j-3 hat k ; vecc=1/(sqrt(3)) hat i+1/(sqrt(3)) hat j-1/(sqrt(3)) hat k

Angle made by vector sqrt(3)hat(i)+sqrt(2)hat(j)-2hat(k) with -ve y- axis is :

Let vec a=2 hati+hat j+ hat k , vec b=hat i+2hat j- hatk and a unit vector vec c be coplanar. If vec c is perpendicular to vec a , then vec c is a. 1/(sqrt(2))(-hat j+hat k) b. 1/(sqrt(3))(-hat i-hat j-hat k)"" c. 1/(sqrt(5))(-hat k-2 hat j) d. 1/(sqrt(3))(hat i-hat j- hat k)

A unit vector perpendicular to both hat i+ hat j\ a n d\ hat j+ hat k is hat i- hat j+ hat k b. hat i+ hat j+ hat k c. 1/(sqrt(3))( hat i+ hat j+ hat k) d. 1/(sqrt(3))( hat i- hat j+ hat k)

Position vector hat k is rotated about the origin by angle 135^0 in such a way that the plane made by it bisects the angel between hat ia n d hatjdot Then its new position is +-( hat i)/(sqrt(2))+-( hat j)/(sqrt(2)) b. +-( hat i)/2+-( hat j)/2-( hat k)/(sqrt(2)) c. ( hat i)/(sqrt(2))-( hat k)/(sqrt(2)) d. none of these

A non-zero vector vec a is such that its projections along vectors ( hat i+ hat j)/(sqrt(2)),(- hat i+ hat j)/(sqrt(2)) and hat k are equal, then unit vector along vec a is a. (sqrt(2) hat j- hat k)/(sqrt(3)) b. ( hat j-sqrt(2) hat k)/(sqrt(3)) c. (sqrt(2))/(sqrt(3)) hat j+( hat k)/(sqrt(3)) d. ( hat j- hat k)/(sqrt(2))

If in a "Delta"A B C ,\ A=(0,0),\ B=(3,3sqrt(3)), C-=(-3sqrt(3),3) then the vector of magnitude 2sqrt(2) units directed along A O ,\ w h e r e\ O is the circumcentre of A B C is a. (1-sqrt(3)) hat i+(1+sqrt(3)) hat j b. (1+sqrt(3)) hat i+(1-sqrt(3)) hat j c. (1+sqrt(3)) hat i+(sqrt(3)-1) hat j d. none of these

The angles with a vector hat(i)+hat(j)+sqrt(2hat(k)) makes with X,Y and Z axes respectively are

Electric flux through a surface of area 100 m^(2) lying in the plane in the xy plane is (in V-m) if E=hat(i)sqrt(2)hat(j)+sqrt(3)hat(k) :

The unit vector perpendicular to the plane passing through point P( hat i- hat j+2 hat k),\ Q(2 hat i- hat k)a n d\ R(2 hat j+ hat k)i s a) dot""2 hat i+ hat j+ hat k"\" b. sqrt(6)(2 hat i+ hat j+ hat k) c. 1/(sqrt(6))(2 hat i+ hat j+ hat k) d. 1/6(2 hat i+ hat j+ hat k)