Home
Class 11
PHYSICS
Given : vec A = hati + hatj +hatk and...

Given :
`vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk` What is the angle between `(vec A - vec B) and vec A` ?

A

`0^(@)`

B

`180^(@)`

C

`90^(@)`

D

`60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \vec{A} - \vec{B} \) and \( \vec{A} \), we will follow these steps: ### Step 1: Calculate \( \vec{A} - \vec{B} \) Given: \[ \vec{A} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{B} = -\hat{i} - \hat{j} - \hat{k} \] We can calculate \( \vec{A} - \vec{B} \): \[ \vec{A} - \vec{B} = (\hat{i} + \hat{j} + \hat{k}) - (-\hat{i} - \hat{j} - \hat{k}) \] \[ = \hat{i} + \hat{j} + \hat{k} + \hat{i} + \hat{j} + \hat{k} \] \[ = 2\hat{i} + 2\hat{j} + 2\hat{k} \] ### Step 2: Find the dot product \( (\vec{A} - \vec{B}) \cdot \vec{A} \) Now we need to find the dot product of \( \vec{A} - \vec{B} \) with \( \vec{A} \): \[ (\vec{A} - \vec{B}) \cdot \vec{A} = (2\hat{i} + 2\hat{j} + 2\hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k}) \] Calculating the dot product: \[ = 2(\hat{i} \cdot \hat{i}) + 2(\hat{j} \cdot \hat{j}) + 2(\hat{k} \cdot \hat{k}) \] \[ = 2(1) + 2(1) + 2(1) = 2 + 2 + 2 = 6 \] ### Step 3: Calculate the magnitudes of \( \vec{A} - \vec{B} \) and \( \vec{A} \) 1. **Magnitude of \( \vec{A} - \vec{B} \)**: \[ |\vec{A} - \vec{B}| = |2\hat{i} + 2\hat{j} + 2\hat{k}| = \sqrt{(2)^2 + (2)^2 + (2)^2} = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3} \] 2. **Magnitude of \( \vec{A} \)**: \[ |\vec{A}| = |\hat{i} + \hat{j} + \hat{k}| = \sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] ### Step 4: Use the dot product to find the angle \( \theta \) Using the formula: \[ (\vec{A} - \vec{B}) \cdot \vec{A} = |\vec{A} - \vec{B}| |\vec{A}| \cos \theta \] Substituting the values we found: \[ 6 = (2\sqrt{3})(\sqrt{3}) \cos \theta \] \[ 6 = 2 \cdot 3 \cos \theta \] \[ 6 = 6 \cos \theta \] \[ \cos \theta = 1 \] ### Step 5: Find \( \theta \) Since \( \cos \theta = 1 \): \[ \theta = 0^\circ \] ### Final Answer: The angle between \( \vec{A} - \vec{B} \) and \( \vec{A} \) is \( 0^\circ \). ---

To find the angle between the vectors \( \vec{A} - \vec{B} \) and \( \vec{A} \), we will follow these steps: ### Step 1: Calculate \( \vec{A} - \vec{B} \) Given: \[ \vec{A} = \hat{i} + \hat{j} + \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If two vectors are given as veca = hati - hatj + 2hatk and vecb = hati + 2hatj+hatk , the unit vector perpendicular to both vec a and vec b is

If volume of parallelopiped whose there coterminous edges are vec u = hat i + hat j + lambda hat k, vec v = 2 hati + hat j + hatk, vecw = hati+hatj+3hatk , is 1 cubic unit then cosine of angle between vec u and vecv is

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If in parallelogram ABCD, diagonal vectors are vec(AC)=2hati+3hatj+4hatk and vec(BD)=-6hati+7hatj-2hatk , then find the adjacent side vectors vec(AB) and vec(AD) .

If vecF = 3hati + 4hatj+5hatk and vecS=6hati +2hatj+5hatk , the find the work done.

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=-2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then

Let barA= hati + 2hatj + 3hatk and vec B = 3hati + 4hatj + 5hatk The value of the scalar sqrt(|vec A times vecB|^2+(vecA.vecB)^2) is equal to

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

If vec(A)=2hati+hatj+hatk " and " vecB=10hati+5hatj+5hatk , if the magnitude of component of (vec(B)-vec(A)) along vec(A) is 4sqrt(x) . Then x will be .

If vec a = hati + 2 hatj + 2 hat k and vec b = 3 hati + 6 hatj + 2 hat k then the vector in the direction of vec a and having mgnitude as |vec b| is