Home
Class 11
PHYSICS
Unit vector perpnicular to vector A=-3ha...

Unit vector perpnicular to vector `A=-3hati-2hatj -3hatk and 2hati + 4hatj +6hatk` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector that is perpendicular to the vectors \( \mathbf{A} = -3\hat{i} - 2\hat{j} - 3\hat{k} \) and \( \mathbf{B} = 2\hat{i} + 4\hat{j} + 6\hat{k} \), we will use the cross product of the two vectors. Here’s a step-by-step solution: ### Step 1: Write down the vectors We have: \[ \mathbf{A} = -3\hat{i} - 2\hat{j} - 3\hat{k} \] \[ \mathbf{B} = 2\hat{i} + 4\hat{j} + 6\hat{k} \] ### Step 2: Set up the cross product The cross product \( \mathbf{A} \times \mathbf{B} \) can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of \( \mathbf{A} \) and \( \mathbf{B} \): \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & -2 & -3 \\ 2 & 4 & 6 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we expand it: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} -2 & -3 \\ 4 & 6 \end{vmatrix} - \hat{j} \begin{vmatrix} -3 & -3 \\ 2 & 6 \end{vmatrix} + \hat{k} \begin{vmatrix} -3 & -2 \\ 2 & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -2 & -3 \\ 4 & 6 \end{vmatrix} = (-2)(6) - (-3)(4) = -12 + 12 = 0 \] 2. For \( -\hat{j} \): \[ \begin{vmatrix} -3 & -3 \\ 2 & 6 \end{vmatrix} = (-3)(6) - (-3)(2) = -18 + 6 = -12 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} -3 & -2 \\ 2 & 4 \end{vmatrix} = (-3)(4) - (-2)(2) = -12 + 4 = -8 \] Putting it all together: \[ \mathbf{A} \times \mathbf{B} = 0\hat{i} + 12\hat{j} - 8\hat{k} = 12\hat{j} - 8\hat{k} \] ### Step 4: Write the resulting vector Thus, \[ \mathbf{R} = 12\hat{j} - 8\hat{k} \] ### Step 5: Calculate the magnitude of \( \mathbf{R} \) The magnitude of \( \mathbf{R} \) is given by: \[ |\mathbf{R}| = \sqrt{(0)^2 + (12)^2 + (-8)^2} = \sqrt{0 + 144 + 64} = \sqrt{208} = 4\sqrt{13} \] ### Step 6: Find the unit vector The unit vector \( \hat{u} \) in the direction of \( \mathbf{R} \) is: \[ \hat{u} = \frac{\mathbf{R}}{|\mathbf{R}|} = \frac{12\hat{j} - 8\hat{k}}{4\sqrt{13}} = \frac{12}{4\sqrt{13}}\hat{j} - \frac{8}{4\sqrt{13}}\hat{k} = \frac{3}{\sqrt{13}}\hat{j} - \frac{2}{\sqrt{13}}\hat{k} \] ### Final Answer The unit vector perpendicular to the vectors \( \mathbf{A} \) and \( \mathbf{B} \) is: \[ \hat{u} = \frac{3}{\sqrt{13}} \hat{j} - \frac{2}{\sqrt{13}} \hat{k} \]

To find the unit vector that is perpendicular to the vectors \( \mathbf{A} = -3\hat{i} - 2\hat{j} - 3\hat{k} \) and \( \mathbf{B} = 2\hat{i} + 4\hat{j} + 6\hat{k} \), we will use the cross product of the two vectors. Here’s a step-by-step solution: ### Step 1: Write down the vectors We have: \[ \mathbf{A} = -3\hat{i} - 2\hat{j} - 3\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

The number of vectors of units length perpendicular to both the vectors hati +2hatj - hatk and 2hati + 4hatj -2hatk is

Find the unit vector perpendicular to the vectors vecA=(hati+2hatj-3hatk)andvecB=(-hati+hatj-hatk)

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

What is the unit vector perpendicular to the following vectors 2hati+2hatj-hatk and 6hati-3hatj+2hatk

Find a vector perpendicular to vector vecA=(hati+2hatj-3hatk) as well as vecB=(hati+hatj-hatk)