Home
Class 11
PHYSICS
Let vec(A) = hat(i)A cos theta + hat(j) ...

Let `vec(A) = hat(i)A cos theta + hat(j) sin theta`, be any vector. Another vector `vec(B)` which is normal to `vec(A)` is :

A

`hati B costheta -hatj B sin theta `

B

`hati B sin theta -hatj B cos theta `

C

`hati B sin theta+hatj B cos theta `

D

`hati B sin theta+hatj B cos theta `

Text Solution

Verified by Experts

The correct Answer is:
B

(b) Dot product of two perpendicular vector should be zero .
`thereforeB=hatiBsintheta-hatjBcostheta`
`[:'(hatiAsintheta)(hatiBsin theta-hatjBcostheta)=0]`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Let vec(A)=hat(i)A cos theta+hat(j)A sin theta , be any vector. Another vector vec(B) which is normal to vec(A) is :-

let vec a= ( hat i+ hat j+ hat k) then find the unit vector along this vector

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Let vec a=2 hat i+ hat k , vec b= hat i+ hat j+ hat ka n d vec c=4 hat i-3 hat j+7 hat k be three vectors. Find vector vec r which satisfies vec rxx vec b= vec cxx vec ba n d vec rdot vec a=0.

Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What is the vector component of vec(A) in the direction of vec(B) ?

Let vec(a) = hat(i) - 2hat(j) + 2hat(k) and vec(b) = 2hat(i) - hat(j) + hat(k) be two vectors. If vec(c) is a vector such that vec(b) xx vec(c) = vec(b) xx vec(a) and vec(c).vec(a) = 1 , then vec(c).vec(b) is equal to :

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

Let vec a= hat i+2 hat ja n d vec b=2 hat i+ hat jdoti s |vec a|=| vec b|? Are the vectors vec a a n d vec b equal?

Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i- hat j- hat k be three vectors. A vector vec v in the plane of vec a a n d vec b , whose projection on vec c is 1/(sqrt(3)) is given by a. hat i-3 hat j+3 hat k b. -3 hat i-3 hat j+3 hat k c. 3 hat i- hat j+3 hat k d. hat i+3 hat j-3 hat k

let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find projection of vec a on vec b