Home
Class 11
PHYSICS
If A =a(1) hat"i"+ b(1)hat"j"and B=a(2)h...

If `A =a_(1) hat"i"+ b_(1)hat"j"and B=a_(2)hat"i"+b_(2)hat"j"` the condition that they are perpendicula to each other is

A

`(a_(1) )/(b_(1))=-(b_(2))/(a_(2))`

B

`a_(1)b_(1)= a_(2) b_(2)`

C

`(a_(1) )/(b_(1))=-(b_(1))/(b_(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition under which the vectors \( \mathbf{A} \) and \( \mathbf{B} \) are perpendicular, we can follow these steps: ### Step-by-Step Solution: 1. **Define the Vectors**: Given the vectors: \[ \mathbf{A} = a_1 \hat{i} + b_1 \hat{j} \] \[ \mathbf{B} = a_2 \hat{i} + b_2 \hat{j} \] 2. **Dot Product of the Vectors**: The dot product \( \mathbf{A} \cdot \mathbf{B} \) is calculated as follows: \[ \mathbf{A} \cdot \mathbf{B} = (a_1 \hat{i} + b_1 \hat{j}) \cdot (a_2 \hat{i} + b_2 \hat{j}) \] Using the properties of the dot product: \[ \mathbf{A} \cdot \mathbf{B} = a_1 a_2 + b_1 b_2 \] 3. **Condition for Perpendicularity**: For the vectors to be perpendicular, their dot product must equal zero: \[ a_1 a_2 + b_1 b_2 = 0 \] 4. **Rearranging the Equation**: We can rearrange this equation to express one term in terms of the other: \[ a_1 a_2 = -b_1 b_2 \] 5. **Expressing Ratios**: From the equation \( a_1 a_2 = -b_1 b_2 \), we can express the ratios: \[ \frac{a_1}{b_1} = -\frac{b_2}{a_2} \] ### Final Condition: Thus, the condition for the vectors \( \mathbf{A} \) and \( \mathbf{B} \) to be perpendicular is: \[ \frac{a_1}{b_1} = -\frac{b_2}{a_2} \]

To determine the condition under which the vectors \( \mathbf{A} \) and \( \mathbf{B} \) are perpendicular, we can follow these steps: ### Step-by-Step Solution: 1. **Define the Vectors**: Given the vectors: \[ \mathbf{A} = a_1 \hat{i} + b_1 \hat{j} ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If the vectors given by vec(A) = hat(i) + 2hat(j) + 2hat(k) and vec(B) = hat(i) - hat(j) + n hat(k) are prerpendicular to each other find the value of n .

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

Write the value of lamda so that the vectors vec(a)= 2hat(i) + lamda hat(j) + hat(k) and vec(b)= hat(i) - 2hat(j) + 3hat(k) are perpendicular to each other?

If vec(A) = 2hat(i) + 7 hat(j) -2hat(k) and vec(B) = 2 hat(i) - 3 hat(j) + 3hat(k) find (i) the magnitude of each other (ii) vec(A) + vec(B) , (iii) vec(A) - vec(B)

If vectors vec a=2 hat i+2 hat j+3 hat k ,\ vec b=- hat i+2 hat j+ hat k and vec c=3 hat i+ hat j are such that vec a+lambda\ vec b is perpendicular to vec c , then find the value of lambda

If vec a= hat i-2 hat j+3 hat k , and vec b=2 hat i+3 hat j-5 hat k , then find vec ax vec b . Verify that vec a and vec ax vec b are perpendicular to each other.

If vec a=2 hat i+2 hat j+3 hat k ,\ vec b=- hat i+2 hat j+ hat k\ a n d\ vec c=3 hat i+ hat j are such that vec a+lambda vec b perpendiculr to vec c , then find the value of lambdadot

For what value lambda are the vectors vec a=2 hat i+\ lambda hat j+ hat k\ a n d\ vec b= hat i-\ 2 hat j+3 hat k perpendicular to each other?

For what value of lambda are the vector vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k perpendicular to each other?

For what value of lambda are the vectores vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k perpendicular to each other?