Home
Class 11
PHYSICS
If vecA=4hati-3hatj and vecB=6hati+8hatj...

If `vecA=4hati-3hatj` and `vecB=6hati+8hatj` then magnitude and direction of `vecA+vecB` will be

A

`5, tan^(-1)(3//4)`

B

`5sqrt(5), tan ^(-1)(1//2)`

C

`10, tan ^(-1)(5)`

D

`25 ,tan ^(-1)(3//4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude and direction of the vector \(\vec{A} + \vec{B}\), we will follow these steps: ### Step 1: Add the vectors \(\vec{A}\) and \(\vec{B}\) Given: \[ \vec{A} = 4\hat{i} - 3\hat{j} \] \[ \vec{B} = 6\hat{i} + 8\hat{j} \] Now, we add the vectors: \[ \vec{A} + \vec{B} = (4\hat{i} - 3\hat{j}) + (6\hat{i} + 8\hat{j}) \] Combine the components: \[ \vec{A} + \vec{B} = (4 + 6)\hat{i} + (-3 + 8)\hat{j} = 10\hat{i} + 5\hat{j} \] ### Step 2: Calculate the magnitude of \(\vec{A} + \vec{B}\) The magnitude of a vector \(\vec{V} = x\hat{i} + y\hat{j}\) is given by: \[ |\vec{V}| = \sqrt{x^2 + y^2} \] For \(\vec{A} + \vec{B} = 10\hat{i} + 5\hat{j}\): \[ |\vec{A} + \vec{B}| = \sqrt{10^2 + 5^2} = \sqrt{100 + 25} = \sqrt{125} \] Simplifying \(\sqrt{125}\): \[ \sqrt{125} = \sqrt{25 \times 5} = 5\sqrt{5} \] ### Step 3: Calculate the direction of \(\vec{A} + \vec{B}\) The direction (angle \(\theta\)) of the vector can be found using the tangent function: \[ \tan \theta = \frac{y}{x} \] For our vector: \[ \tan \theta = \frac{5}{10} = \frac{1}{2} \] To find \(\theta\): \[ \theta = \tan^{-1}\left(\frac{1}{2}\right) \] ### Final Result Thus, the magnitude and direction of \(\vec{A} + \vec{B}\) are: - Magnitude: \(5\sqrt{5}\) - Direction: \(\theta = \tan^{-1}\left(\frac{1}{2}\right)\)

To find the magnitude and direction of the vector \(\vec{A} + \vec{B}\), we will follow these steps: ### Step 1: Add the vectors \(\vec{A}\) and \(\vec{B}\) Given: \[ \vec{A} = 4\hat{i} - 3\hat{j} \] ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If vecA=3hati-4hatj and vecB=- hati- 4hatj , calculate the direction of vecA+vecB

If vecA = 3hati - 4hatj and vecB = -hati - 4hatj , calculate the direction of vecA- vecB .

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If vecA=3hati+4hatj and vecB=6hati+8hatj and A and B are the magnitudes of vecA and vecB , then which of the following is not true?

If vecA=2hati+4hatj and vecB=6hati+8hatj and A and B are the magnitudes of vecA and vecB , then find the value of A and B

If vecA=2hati-2hatj-hatk and vecB=hati+hatj , then : (a) Find angle between vecA and vecB .

If vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk , then find a unit vector along (vecA-vecB) .

If vecA=2hati + 3hatj and vecB= 5hati + 7hatj , then the vector having the magnitude of vecA and direction of vecB would be

If veca=hati+hatj,vecb=hati-hatj , then veca.vecb=

If veca=hati+2hatj-hatk and vecb=3hati+hatj-hatk find a unit vector int direction of veca-vecb .