Home
Class 11
PHYSICS
A number of vectors are as shown in ....

A number of vectors are as shown in .They can be combined in various ways , like `vec(A) + vec(C ) = vec(B)` . What is the value of (a) `vec(E ) + vec(C ) ` (b) `vec(A) + vec(F) ` (c ) `vec(A) + vec(D) ` (d) `vec(E ) + vec(A)` (e ) `vec(A) - vec(B)` .

A

AO

B

2AO

C

4AO

D

6AO

Text Solution

Verified by Experts

The correct Answer is:
D

(d) AB+AC+AD+AE+AF

`=AB+(AB+BC)+(AB+BC+CD)+(AB+BC+CD+DE)AF`
`=AB+(AB+BC+CD+DE+EF)`
`+AB+BC+CD+DE+EF`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If [ 2 vec (a) - 3 vec(b) vec( c ) vec(d)] =lambda [vec(a) vec(c ) vec(d) ] + mu [ vec(b) vec( c ) vec( d) ] , then 2 lambda + 3 mu=

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a

For any three vectors a,b\ a n d\ c write the value of vec axx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)dot

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

If vec A, vec B and vec C are vectors such that |vec B|-|vec C| . Prove that [(vec A+ vec B)xx (vec A + vec C)]xx (vec B+vec C).(vec B+ vec C)=0

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C