Home
Class 11
PHYSICS
If a and b are two vectors.then the valu...

If a and b are two vectors.then the value of `(a+b)xx(a-b)` is

A

`2(bxxa)`

B

`-2(bxxa)`

C

`bxxa`

D

`bxxa`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \((\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b})\), we can use the properties of the cross product. Let's break it down step by step. ### Step-by-Step Solution: 1. **Write the Expression**: We start with the expression: \[ (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b}) \] 2. **Apply the Distributive Property**: Using the distributive property of the cross product, we can expand the expression: \[ = \mathbf{a} \times \mathbf{a} - \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{a} - \mathbf{b} \times \mathbf{b} \] 3. **Evaluate Each Term**: - The cross product of any vector with itself is zero: \[ \mathbf{a} \times \mathbf{a} = \mathbf{0} \] \[ \mathbf{b} \times \mathbf{b} = \mathbf{0} \] - Thus, we can simplify: \[ = \mathbf{0} - \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{a} - \mathbf{0} \] 4. **Use the Anti-symmetry Property**: The cross product is anti-symmetric, meaning: \[ \mathbf{b} \times \mathbf{a} = -(\mathbf{a} \times \mathbf{b}) \] Therefore, we can substitute: \[ = -\mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{b} \] \[ = -2(\mathbf{a} \times \mathbf{b}) \] 5. **Final Result**: Thus, the final value of \((\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b})\) is: \[ = -2(\mathbf{a} \times \mathbf{b}) \] ### Conclusion: The value of \((\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b})\) is \(-2(\mathbf{a} \times \mathbf{b})\). ---

To solve the problem of finding the value of \((\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b})\), we can use the properties of the cross product. Let's break it down step by step. ### Step-by-Step Solution: 1. **Write the Expression**: We start with the expression: \[ (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b}) ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If vec(a) and vec(b) are two vectors such that |vec(a) xx vec(b)| = vec(a).vec(b) , then what is the angle between vec(a) and vec(b) .

If vec(a) and vec(b) are two vector such that |vec(a) +vec(b)| =|vec(a)| , then show that vector |2a +b| is perpendicular to vec(b) .

If vec a , vec b are two vectors, then write the truth value of the following statements: vec a=- vec b| vec a|=| vec b| | vec a|=| vec b| vec a=+- vec b | vec a|=| vec b| vec a= vec b

If a, b and c are three non-coplanar vectors, then find the value of (a*(btimesc))/(ctimes(a*b))+(b*(ctimesa))/(c*(atimesb)) .

If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|

If hat a ,\ hat b are unit vector such that \ hat a+ hat b is a unit vectors, write the value of | hat a- hat b|dot

a and b are non-collinear vectors. If c=(x-2) a+b and d=(2x+1)a-b are collinear vectors, then find the value of x.

If vec(A) and vec(B) are two vectors, then the correct relation is :

If vec aa n d vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b]dot

If 2160 = 2^(a). 3^(b) . 5^(c ) , find a, b and c. Hence calculate the value of 3^(a) xx 2^(-b) xx 5^(-c ) .