Home
Class 11
PHYSICS
Given that vec(A)+vec(B)=vec(C ) and tha...

Given that `vec(A)+vec(B)=vec(C )` and that `vec(C )` is perpendicular to `vec(A)` Further if `|vec(A)|=|vec(C )|`, then what is the angle between `vec(A)` and `vec(B)`

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`(3pi)/(4)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information and apply vector concepts. ### Step 1: Understand the Given Information We have three vectors: - \(\vec{A}\) - \(\vec{B}\) - \(\vec{C}\) The relationships given are: 1. \(\vec{A} + \vec{B} = \vec{C}\) 2. \(\vec{C}\) is perpendicular to \(\vec{A}\) (\(\vec{A} \cdot \vec{C} = 0\)) 3. \(|\vec{A}| = |\vec{C}|\) ### Step 2: Use the Perpendicular Condition Since \(\vec{C}\) is perpendicular to \(\vec{A}\), we can express this condition mathematically: \[ \vec{A} \cdot \vec{C} = 0 \] Substituting \(\vec{C} = \vec{A} + \vec{B}\): \[ \vec{A} \cdot (\vec{A} + \vec{B}) = 0 \] This expands to: \[ \vec{A} \cdot \vec{A} + \vec{A} \cdot \vec{B} = 0 \] Since \(\vec{A} \cdot \vec{A} = |\vec{A}|^2\), we have: \[ |\vec{A}|^2 + \vec{A} \cdot \vec{B} = 0 \] Thus, \[ \vec{A} \cdot \vec{B} = -|\vec{A}|^2 \] ### Step 3: Use the Magnitude Condition Given that \(|\vec{A}| = |\vec{C}|\), we substitute \(|\vec{C}|\) into the equation: \[ |\vec{C}| = |\vec{A} + \vec{B}| \] Using the property of magnitudes: \[ |\vec{C}|^2 = |\vec{A} + \vec{B}|^2 \] This expands to: \[ |\vec{C}|^2 = |\vec{A}|^2 + |\vec{B}|^2 + 2\vec{A} \cdot \vec{B} \] Since \(|\vec{C}| = |\vec{A}|\), we can write: \[ |\vec{A}|^2 = |\vec{A}|^2 + |\vec{B}|^2 + 2\vec{A} \cdot \vec{B} \] Cancelling \(|\vec{A}|^2\) from both sides gives: \[ 0 = |\vec{B}|^2 + 2\vec{A} \cdot \vec{B} \] ### Step 4: Substitute \(\vec{A} \cdot \vec{B}\) We already found that \(\vec{A} \cdot \vec{B} = -|\vec{A}|^2\). Substituting this in: \[ 0 = |\vec{B}|^2 - 2|\vec{A}|^2 \] This implies: \[ |\vec{B}|^2 = 2|\vec{A}|^2 \] Thus, we can express \(|\vec{B}|\) in terms of \(|\vec{A}|\): \[ |\vec{B}| = |\vec{A}| \sqrt{2} \] ### Step 5: Find the Angle Between \(\vec{A}\) and \(\vec{B}\) Using the dot product formula: \[ \vec{A} \cdot \vec{B} = |\vec{A}||\vec{B}|\cos\theta \] Substituting the values we have: \[ -|\vec{A}|^2 = |\vec{A}|(|\vec{A}|\sqrt{2})\cos\theta \] This simplifies to: \[ -|\vec{A}|^2 = |\vec{A}|^2\sqrt{2}\cos\theta \] Dividing both sides by \(|\vec{A}|^2\) (assuming \(|\vec{A}| \neq 0\)): \[ -1 = \sqrt{2}\cos\theta \] Thus, \[ \cos\theta = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2} \] This corresponds to an angle of: \[ \theta = 135^\circ \quad \text{(or } \frac{3\pi}{4} \text{ radians)} \] ### Final Answer The angle between \(\vec{A}\) and \(\vec{B}\) is \(135^\circ\) or \(\frac{3\pi}{4}\) radians. ---

To solve the problem step by step, we start with the given information and apply vector concepts. ### Step 1: Understand the Given Information We have three vectors: - \(\vec{A}\) - \(\vec{B}\) - \(\vec{C}\) ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If vec(A) + vec(B) = vec(C ) and A + B = C , then the angle between vec(A) and vec(B) is :

Given that vec(a). vec(b) =vec(a). vec(c ) Does this mean that vec(b) = vec(c ) ?

The magnitude of vector vec(A),vec(B) and vec(C ) are respectively 12,5 and 13 unit and vec(A)+vec(B)= vec(C ) then the angle between vec(A) and vec(B) is

Given that vec(A)+vec(B)=vec(C ) . If |vec(A)|=4, |vec(B)|=5 and |vec(C )|=sqrt(61) , the angle between vec(A) and vec(B) is

If vec(A)=vec(B)+vec(C ) , and the magnitudes of vec(A) , vec(B) , vec(C ) are 5,4, and 3 units, then the angle between vec(A) and vec(C ) is

If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b)| =3 and | vec( c)| =4 , then the angle between vec(b) and vec(c ) is

Let vec(A), vec(B) and vec(C) , be unit vectors. Suppose that vec(A).vec(B)=vec(A).vec(C)=0 and the angle between vec(B) and vec(C) is pi/6 then

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

The magnitudes of vectors vec(A),vec(B) and vec(C) are 3,4 and 5 unit respectively. If vec(A)+vec(B)=vec(C), the angle between vec(A) and vec(B) is

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot