Home
Class 11
PHYSICS
If A+B=C,|A|=2|B|and B.C=0, then...

If `A+B=C,|A|=2|B|and B.C=0,` then

A

`|A+B|=|A+B|`

B

`|A+C|=B`

C

`A.Blt0`

D

A.C may be zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information and apply vector properties. ### Step 1: Write down the given equations We have the following equations: 1. \( \mathbf{A} + \mathbf{B} = \mathbf{C} \) 2. \( |\mathbf{A}| = 2 |\mathbf{B}| \) 3. \( \mathbf{B} \cdot \mathbf{C} = 0 \) ### Step 2: Express \(\mathbf{C}\) in terms of \(\mathbf{A}\) and \(\mathbf{B}\) From the first equation, we can express \(\mathbf{C}\) as: \[ \mathbf{C} = \mathbf{A} + \mathbf{B} \] ### Step 3: Substitute \(\mathbf{C}\) into the dot product equation Substituting \(\mathbf{C}\) into the dot product equation gives: \[ \mathbf{B} \cdot (\mathbf{A} + \mathbf{B}) = 0 \] This expands to: \[ \mathbf{B} \cdot \mathbf{A} + \mathbf{B} \cdot \mathbf{B} = 0 \] ### Step 4: Simplify the dot product equation We know that \(\mathbf{B} \cdot \mathbf{B} = |\mathbf{B}|^2\). Thus, we can rewrite the equation as: \[ \mathbf{B} \cdot \mathbf{A} + |\mathbf{B}|^2 = 0 \] This implies: \[ \mathbf{B} \cdot \mathbf{A} = -|\mathbf{B}|^2 \] ### Step 5: Use the relationship between magnitudes Given that \( |\mathbf{A}| = 2 |\mathbf{B}| \), we can substitute this into the dot product. The magnitude of \(\mathbf{A}\) can be expressed as: \[ |\mathbf{A}|^2 = (2|\mathbf{B}|)^2 = 4|\mathbf{B}|^2 \] ### Step 6: Find the angle between \(\mathbf{A}\) and \(\mathbf{B}\) Using the dot product formula: \[ \mathbf{A} \cdot \mathbf{B} = |\mathbf{A}||\mathbf{B}|\cos(\theta) \] Substituting the magnitudes: \[ \mathbf{B} \cdot \mathbf{A} = 4|\mathbf{B}|^2 \cos(\theta) \] Setting this equal to \(-|\mathbf{B}|^2\) from the previous step: \[ 4|\mathbf{B}|^2 \cos(\theta) = -|\mathbf{B}|^2 \] Dividing both sides by \(|\mathbf{B}|^2\) (assuming \(|\mathbf{B}| \neq 0\)): \[ 4 \cos(\theta) = -1 \] Thus, we find: \[ \cos(\theta) = -\frac{1}{4} \] ### Step 7: Determine the angle \(\theta\) To find the angle \(\theta\), we can use the inverse cosine function: \[ \theta = \cos^{-1}\left(-\frac{1}{4}\right) \] ### Conclusion The angle between vectors \(\mathbf{A}\) and \(\mathbf{B}\) is \(\theta = \cos^{-1}\left(-\frac{1}{4}\right)\).

To solve the problem step by step, we start with the given information and apply vector properties. ### Step 1: Write down the given equations We have the following equations: 1. \( \mathbf{A} + \mathbf{B} = \mathbf{C} \) 2. \( |\mathbf{A}| = 2 |\mathbf{B}| \) 3. \( \mathbf{B} \cdot \mathbf{C} = 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then a*b+b*c+c*a is equal to

If in a triangle A B C angle B=90^0 then tan^2(A/2) is (b-c)/a (b) (b-c)/(b+c) (c) (b+c)/(b-c) (d) (b+c)/a

If a+b+c=0 and a^2+b^2+c^2=1, then (a) a b+b c+c a=1/2 (b) a b+b c+c a=-1/2 (c) a^4+b^4+c^4=1/2 (d) a^4+b^4+c^4=3/2

If a, b, c are in H.P., then the equation a(b-c) x^(2) + b(c-a)x+c(a-b)=0

If a^2+b^2+c^2-a b-b c-c a=0, then find the relation between a,b and c

If a^2+b^2+c^2-a b-b c-c a=0, then (a) a+b=c (b) b+c=a (c) c+a=b (d) a=b=c

In Figure, A B C is a triangle in which /_B=2/_C . D is a point on side B C such that A D bisects /_B A C\ a n d\ A B=C D. B P is the bisector of /_B . The measure of /_B A C is (a) 72^0 (b) 73^0 (c) 74^0 (d) 96^0

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

If a b+b c+c a=0, then solve a(b-2c)x^2+b(c-2a)x+c(a-2b)=0.

Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2 , B=b^2c+b c^2-a^2b-a b^2,and C=a^2c +'a c^2-b^2' c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot