Home
Class 11
PHYSICS
The value of hati xx(hatixxa)+hatjxx(hat...

The value of `hati xx(hatixxa)+hatjxx(hatjxxa) +hatk xx(hatkxxa)` is

A

a

B

`axxhatk`

C

`-2a`

D

`-a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \hat{i} \times (\hat{i} \times \mathbf{a}) + \hat{j} \times (\hat{j} \times \mathbf{a}) + \hat{k} \times (\hat{k} \times \mathbf{a}) \] where \(\mathbf{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\). ### Step 1: Calculate \(\hat{i} \times \mathbf{a}\) Using the properties of the cross product: \[ \hat{i} \times \mathbf{a} = \hat{i} \times (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \] Calculating each term: - \(\hat{i} \times \hat{i} = 0\) - \(\hat{i} \times \hat{j} = \hat{k}\) - \(\hat{i} \times \hat{k} = -\hat{j}\) Thus, \[ \hat{i} \times \mathbf{a} = 0 + a_2 \hat{k} - a_3 \hat{j} = a_2 \hat{k} - a_3 \hat{j} \] ### Step 2: Calculate \(\hat{i} \times (\hat{i} \times \mathbf{a})\) Now, we compute: \[ \hat{i} \times (a_2 \hat{k} - a_3 \hat{j}) = a_2 (\hat{i} \times \hat{k}) - a_3 (\hat{i} \times \hat{j}) \] Calculating each term: - \(\hat{i} \times \hat{k} = -\hat{j}\) - \(\hat{i} \times \hat{j} = \hat{k}\) Thus, \[ \hat{i} \times (a_2 \hat{k} - a_3 \hat{j}) = -a_2 \hat{j} - a_3 \hat{k} \] ### Step 3: Calculate \(\hat{j} \times \mathbf{a}\) Next, we compute: \[ \hat{j} \times \mathbf{a} = \hat{j} \times (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \] Calculating each term: - \(\hat{j} \times \hat{i} = -\hat{k}\) - \(\hat{j} \times \hat{j} = 0\) - \(\hat{j} \times \hat{k} = \hat{i}\) Thus, \[ \hat{j} \times \mathbf{a} = -a_1 \hat{k} + a_3 \hat{i} \] ### Step 4: Calculate \(\hat{j} \times (\hat{j} \times \mathbf{a})\) Now, we compute: \[ \hat{j} \times (-a_1 \hat{k} + a_3 \hat{i}) = -a_1 (\hat{j} \times \hat{k}) + a_3 (\hat{j} \times \hat{i}) \] Calculating each term: - \(\hat{j} \times \hat{k} = \hat{i}\) - \(\hat{j} \times \hat{i} = -\hat{k}\) Thus, \[ \hat{j} \times (-a_1 \hat{k} + a_3 \hat{i}) = -a_1 \hat{i} - a_3 \hat{k} \] ### Step 5: Calculate \(\hat{k} \times \mathbf{a}\) Next, we compute: \[ \hat{k} \times \mathbf{a} = \hat{k} \times (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \] Calculating each term: - \(\hat{k} \times \hat{i} = \hat{j}\) - \(\hat{k} \times \hat{j} = -\hat{i}\) - \(\hat{k} \times \hat{k} = 0\) Thus, \[ \hat{k} \times \mathbf{a} = a_1 \hat{j} - a_2 \hat{i} \] ### Step 6: Calculate \(\hat{k} \times (\hat{k} \times \mathbf{a})\) Now, we compute: \[ \hat{k} \times (a_1 \hat{j} - a_2 \hat{i}) = a_1 (\hat{k} \times \hat{j}) - a_2 (\hat{k} \times \hat{i}) \] Calculating each term: - \(\hat{k} \times \hat{j} = -\hat{i}\) - \(\hat{k} \times \hat{i} = \hat{j}\) Thus, \[ \hat{k} \times (a_1 \hat{j} - a_2 \hat{i}) = -a_1 \hat{i} + a_2 \hat{j} \] ### Step 7: Combine all results Now we combine all the results: \[ \hat{i} \times (\hat{i} \times \mathbf{a}) + \hat{j} \times (\hat{j} \times \mathbf{a}) + \hat{k} \times (\hat{k} \times \mathbf{a}) \] Substituting the values we calculated: \[ (-a_2 \hat{j} - a_3 \hat{k}) + (-a_1 \hat{i} - a_3 \hat{k}) + (-a_1 \hat{i} + a_2 \hat{j}) \] Combining like terms: \[ -2a_1 \hat{i} - 2a_2 \hat{j} - 2a_3 \hat{k} = -2(a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) = -2 \mathbf{a} \] ### Final Answer Thus, the value of the expression is: \[ -2 \mathbf{a} \]

To solve the problem, we need to evaluate the expression: \[ \hat{i} \times (\hat{i} \times \mathbf{a}) + \hat{j} \times (\hat{j} \times \mathbf{a}) + \hat{k} \times (\hat{k} \times \mathbf{a}) \] where \(\mathbf{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\). ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

The value of hati.(hatj xx hatk) + hatj.(hati xx hatk) + hatk.( hati xx hatj) is

Find the value of |hatixx(hati+hatj+hatk)|

The value of (hatixxhatj).hatk+hati.hatj is

Find the value of |(3hati+hatj)xx(2hati-hatj)|

Find the value of |(hati+hatj)xx(hati+2hatj+hatk)|

Prove that: (2hati+3hatj)xx(hati+2hatj)=hatk

Find the values of . (a) (4hatj) xx (-6hatk) (b) (3hatj).(-4hatj) (c) (2hati) - (-4hatk) .

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0

(a*hati)hati+(a*hatj)hatj+(a*hatk)hatk is equal to

Prove that hati xx(vecaxxveci)+hatjxx(vecaxxvecj)+hatkxx(vecaxxveck)=2veca