Home
Class 11
PHYSICS
If a(1) and a(2) are two non- collinear ...

If `a_(1) and a_(2)` are two non- collinear unit vectors and if `|a_(1)+a_(2)|=sqrt(3),` ,then value of `(a_(1)-a_(2)).(2a_(1)-a_(2))` is

A

2

B

`(3)/(2)`

C

`(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\mathbf{a_1} - \mathbf{a_2}) \cdot (2\mathbf{a_1} - \mathbf{a_2})\) given that \(|\mathbf{a_1} + \mathbf{a_2}| = \sqrt{3}\) and that \(\mathbf{a_1}\) and \(\mathbf{a_2}\) are unit vectors. ### Step 1: Understand the given information We know: - \(|\mathbf{a_1}| = 1\) - \(|\mathbf{a_2}| = 1\) - \(|\mathbf{a_1} + \mathbf{a_2}| = \sqrt{3}\) ### Step 2: Use the formula for the magnitude of a vector sum Using the formula for the magnitude of the sum of two vectors: \[ |\mathbf{a_1} + \mathbf{a_2}|^2 = |\mathbf{a_1}|^2 + |\mathbf{a_2}|^2 + 2 \mathbf{a_1} \cdot \mathbf{a_2} \] Substituting the known values: \[ (\sqrt{3})^2 = 1^2 + 1^2 + 2 \mathbf{a_1} \cdot \mathbf{a_2} \] This simplifies to: \[ 3 = 1 + 1 + 2 \mathbf{a_1} \cdot \mathbf{a_2} \] \[ 3 = 2 + 2 \mathbf{a_1} \cdot \mathbf{a_2} \] \[ 2 \mathbf{a_1} \cdot \mathbf{a_2} = 1 \quad \Rightarrow \quad \mathbf{a_1} \cdot \mathbf{a_2} = \frac{1}{2} \] ### Step 3: Calculate the dot product \((\mathbf{a_1} - \mathbf{a_2}) \cdot (2\mathbf{a_1} - \mathbf{a_2})\) We can expand this dot product: \[ (\mathbf{a_1} - \mathbf{a_2}) \cdot (2\mathbf{a_1} - \mathbf{a_2}) = \mathbf{a_1} \cdot (2\mathbf{a_1}) - \mathbf{a_1} \cdot \mathbf{a_2} - \mathbf{a_2} \cdot (2\mathbf{a_1}) + \mathbf{a_2} \cdot \mathbf{a_2} \] This simplifies to: \[ = 2 \mathbf{a_1} \cdot \mathbf{a_1} - \mathbf{a_1} \cdot \mathbf{a_2} - 2 \mathbf{a_2} \cdot \mathbf{a_1} + \mathbf{a_2} \cdot \mathbf{a_2} \] Substituting the known values: \[ = 2(1) - \frac{1}{2} - 2\left(\frac{1}{2}\right) + 1 \] \[ = 2 - \frac{1}{2} - 1 + 1 \] \[ = 2 - \frac{1}{2} = 1.5 = \frac{3}{2} \] ### Final Answer Thus, the value of \((\mathbf{a_1} - \mathbf{a_2}) \cdot (2\mathbf{a_1} - \mathbf{a_2})\) is \(\frac{3}{2}\).

To solve the problem, we need to find the value of \((\mathbf{a_1} - \mathbf{a_2}) \cdot (2\mathbf{a_1} - \mathbf{a_2})\) given that \(|\mathbf{a_1} + \mathbf{a_2}| = \sqrt{3}\) and that \(\mathbf{a_1}\) and \(\mathbf{a_2}\) are unit vectors. ### Step 1: Understand the given information We know: - \(|\mathbf{a_1}| = 1\) - \(|\mathbf{a_2}| = 1\) - \(|\mathbf{a_1} + \mathbf{a_2}| = \sqrt{3}\) ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If a_(1) and a_(2) aare two non- collineaar unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is

If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :

A_(1) and A_(2) are two vectors such that |A_(1)| = 3 , |A_(2)| = 5 and |A_(1)+A_(2)| = 5 the value of (2A_(1)+3A_(2)).(2A_(1)-2A_(2)) is

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)

If a_(1), a_(2), a_(3), a_(4), a_(5) are consecutive terms of an arithmetic progression with common difference 3, then the value of |(a_(3)^(2),a_(2),a_(1)),(a_(4)^(2),a_(3),a_(2)),(a_(5)^(2),a_(4),a_(3))| is

If A_(1),A_(2) are between two numbers, then (A_(1)+A_(2))/(H_(1)+H_(2)) is equal to