Home
Class 11
PHYSICS
Two vector A and B have rqual magnitud...

Two vector A and B have rqual magnitude x .Angle between tjem is `60^(@)` Then match the following two columns.
`{:(,"Column I ",,"Column II"),((A),"|A+B|",(P),(sqrt(3))/(2)x^(2)),((B),|A-B|,(Q),x),((C), A.B,(r),sqrt(3)x),((D), |AxxB|,(s),"None"):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the following for two vectors \( \mathbf{A} \) and \( \mathbf{B} \) with equal magnitude \( x \) and an angle of \( 60^\circ \) between them: 1. Magnitude of \( \mathbf{A} + \mathbf{B} \) 2. Magnitude of \( \mathbf{A} - \mathbf{B} \) 3. Dot product \( \mathbf{A} \cdot \mathbf{B} \) 4. Magnitude of the cross product \( \mathbf{A} \times \mathbf{B} \) ### Step 1: Calculate \( |\mathbf{A} + \mathbf{B}| \) Using the formula for the magnitude of the sum of two vectors: \[ |\mathbf{A} + \mathbf{B}| = \sqrt{|\mathbf{A}|^2 + |\mathbf{B}|^2 + 2 |\mathbf{A}| |\mathbf{B}| \cos \theta} \] Substituting \( |\mathbf{A}| = |\mathbf{B}| = x \) and \( \theta = 60^\circ \): \[ |\mathbf{A} + \mathbf{B}| = \sqrt{x^2 + x^2 + 2 \cdot x \cdot x \cdot \cos(60^\circ)} \] Since \( \cos(60^\circ) = \frac{1}{2} \): \[ |\mathbf{A} + \mathbf{B}| = \sqrt{x^2 + x^2 + 2 \cdot x^2 \cdot \frac{1}{2}} = \sqrt{x^2 + x^2 + x^2} = \sqrt{3x^2} = \sqrt{3} x \] ### Step 2: Calculate \( |\mathbf{A} - \mathbf{B}| \) Using the formula for the magnitude of the difference of two vectors: \[ |\mathbf{A} - \mathbf{B}| = \sqrt{|\mathbf{A}|^2 + |\mathbf{B}|^2 - 2 |\mathbf{A}| |\mathbf{B}| \cos \theta} \] Substituting the same values: \[ |\mathbf{A} - \mathbf{B}| = \sqrt{x^2 + x^2 - 2 \cdot x \cdot x \cdot \cos(60^\circ)} \] \[ |\mathbf{A} - \mathbf{B}| = \sqrt{x^2 + x^2 - x^2} = \sqrt{x^2} = x \] ### Step 3: Calculate \( \mathbf{A} \cdot \mathbf{B} \) Using the dot product formula: \[ \mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta \] Substituting the values: \[ \mathbf{A} \cdot \mathbf{B} = x \cdot x \cdot \cos(60^\circ) = x^2 \cdot \frac{1}{2} = \frac{x^2}{2} \] ### Step 4: Calculate \( |\mathbf{A} \times \mathbf{B}| \) Using the magnitude of the cross product formula: \[ |\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| |\mathbf{B}| \sin \theta \] Substituting the values: \[ |\mathbf{A} \times \mathbf{B}| = x \cdot x \cdot \sin(60^\circ) = x^2 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} x^2 \] ### Summary of Results 1. \( |\mathbf{A} + \mathbf{B}| = \sqrt{3} x \) (matches with \( r \)) 2. \( |\mathbf{A} - \mathbf{B}| = x \) (matches with \( Q \)) 3. \( \mathbf{A} \cdot \mathbf{B} = \frac{x^2}{2} \) (matches with \( S \), which is "None" since it is not listed) 4. \( |\mathbf{A} \times \mathbf{B}| = \frac{\sqrt{3}}{2} x^2 \) (matches with \( P \)) ### Final Matching - \( A \) matches with \( r \) - \( B \) matches with \( Q \) - \( C \) matches with \( S \) (None) - \( D \) matches with \( P \)

To solve the problem, we need to calculate the following for two vectors \( \mathbf{A} \) and \( \mathbf{B} \) with equal magnitude \( x \) and an angle of \( 60^\circ \) between them: 1. Magnitude of \( \mathbf{A} + \mathbf{B} \) 2. Magnitude of \( \mathbf{A} - \mathbf{B} \) 3. Dot product \( \mathbf{A} \cdot \mathbf{B} \) 4. Magnitude of the cross product \( \mathbf{A} \times \mathbf{B} \) ### Step 1: Calculate \( |\mathbf{A} + \mathbf{B}| \) ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If theta is the abgle between two vectors A and B , then match the following two columns. {:(,"Column I ",,"Column II"),((A),A.B=|AxxB|,(P),theta=90^(@)),((B),A.B=B^(2),(Q),theta=0^(@)or 180^(@)),((C),|A+B|=|A-C|,(r),A=B),((D), |AxxB|=AB,(s),"None"):}

A vector has a magnitude x . If it is rotated by an angle theta then magnitude of change in vector is nx. Match the following two columns. {:(,"Column I ",,"Column II"),((A),theta=60^(@),(P),n=sqrt(3)),((B),theta=90^(@),(Q),n=1),((C), theta=120^(@),(r),n=sqrt(2)),((D), theta=180^(@),(s),n=2):}

Vector A is pointing eastwards and vector B northwards .If |A|=|B| then match the following two columns. {:(,"Column I ",,"Column II"),((A),(A+B),(P),"north -east"),((B),(A-B),(Q),"Vertically upwards"),((C), (AxxB),(r),"south-east"),((D), (AxxB)xx(AxxB),(s),"None"):}

Match the following columns. {:(,"Column I",,"Column II"),(A.,"Tesla",p,[ML^(2)A^(-2)T^(-2)]),(B.,"Weber",q,[MLA^(-2)T^(-1)]),(C.,"Weber m"^(-2),r.,[MA^(-1)T^(-2)]),(D.,"Henry",s.,"None"):}

{:("Column A", " ","Column B"),(sqrt(3) + sqrt(5)," ",sqrt(8)):}

{:("Column A", " ","Column B"),((sqrt(2))/(3)," ",2//5):}

{:("Column A"," ","Column B"),(x(x^2)^(4),,(x^3)^3):}

{:("Column A",x > 0, "Column B"),(1//2x,,2x):}

{:("Column A"," ","Column B"),((((sqrt7)^(x))^(2))/((sqrt7)^(11)),,(7^(x))/(7^(13))):}

Match the following : {:(,"Column-I",,"Column-II"),((A),3s^(1),(p),n=3),((B), 3p^(1),(q), l=0),((C ), 4s^(1),(r ) , l=1),((D),4d^(1),(s),m=0),(,,(t),m=+-1):}