Home
Class 11
PHYSICS
Consider three vectors A=hati +hatj-2hat...

Consider three vectors `A=hati +hatj-2hatk`,
`B=hati +hatj+2hatk and 2hati -3hatj +4hatk` A vector X of the from `alphaA +betaB (alpha and beta"are numbers")` is perpendicular to C .The ratio of `alpha and beta` is

A

`1:1`

B

`2:1`

C

`-1:1`

D

`3:1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the coefficients \( \alpha \) and \( \beta \) such that the vector \( \mathbf{X} = \alpha \mathbf{A} + \beta \mathbf{B} \) is perpendicular to the vector \( \mathbf{C} \). ### Step-by-Step Solution: 1. **Identify the Vectors**: - Given vectors: \[ \mathbf{A} = \hat{i} + \hat{j} - 2\hat{k} \] \[ \mathbf{B} = \hat{i} + \hat{j} + 2\hat{k} \] \[ \mathbf{C} = 2\hat{i} - 3\hat{j} + 4\hat{k} \] 2. **Express Vector \( \mathbf{X} \)**: - The vector \( \mathbf{X} \) can be expressed as: \[ \mathbf{X} = \alpha \mathbf{A} + \beta \mathbf{B} = \alpha(\hat{i} + \hat{j} - 2\hat{k}) + \beta(\hat{i} + \hat{j} + 2\hat{k}) \] - Expanding this gives: \[ \mathbf{X} = (\alpha + \beta)\hat{i} + (\alpha + \beta)\hat{j} + (-2\alpha + 2\beta)\hat{k} \] 3. **Dot Product Condition for Perpendicularity**: - For \( \mathbf{X} \) to be perpendicular to \( \mathbf{C} \), the dot product must be zero: \[ \mathbf{X} \cdot \mathbf{C} = 0 \] - Calculating the dot product: \[ \mathbf{X} \cdot \mathbf{C} = (\alpha + \beta)(2) + (\alpha + \beta)(-3) + (-2\alpha + 2\beta)(4) \] - Simplifying this: \[ = 2(\alpha + \beta) - 3(\alpha + \beta) + 4(-2\alpha + 2\beta) \] \[ = (2 - 3)(\alpha + \beta) + 4(-2\alpha + 2\beta) \] \[ = -1(\alpha + \beta) + 8\beta - 8\alpha \] \[ = -\alpha - \beta + 8\beta - 8\alpha \] \[ = -9\alpha + 7\beta \] 4. **Set the Dot Product to Zero**: - Setting the equation to zero: \[ -9\alpha + 7\beta = 0 \] - Rearranging gives: \[ 9\alpha = 7\beta \] - Thus, the ratio \( \frac{\alpha}{\beta} \) is: \[ \frac{\alpha}{\beta} = \frac{7}{9} \] 5. **Finding the Ratio**: - To express the ratio \( \alpha : \beta \): \[ \alpha : \beta = 7 : 9 \] ### Final Answer: The ratio of \( \alpha \) to \( \beta \) is \( 7 : 9 \).

To solve the problem, we need to find the ratio of the coefficients \( \alpha \) and \( \beta \) such that the vector \( \mathbf{X} = \alpha \mathbf{A} + \beta \mathbf{B} \) is perpendicular to the vector \( \mathbf{C} \). ### Step-by-Step Solution: 1. **Identify the Vectors**: - Given vectors: \[ \mathbf{A} = \hat{i} + \hat{j} - 2\hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

Show that the vectors a =3hati - 2hatj+hatk, b=hati - 3hatj+5hatk and c=2hati+hatj-4hatk form a right angled triangle.

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

Show that vectors 3hati-2hatj+2hatk,hati-3hatj+4hatk and 2hati-hatj-2hatk form a right angled triangle

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

If a=hati+2hatj+3hatk,b=-hati+2hatj+hatk and c=3hati+hatj , then the unit vector along its resultant is