Home
Class 11
PHYSICS
When a force is applied on a wire of uni...

When a force is applied on a wire of uniform cross-sectional area `3xx10^-6m^2` and length 4 m, the increase in length is 1mm. Energy stored in it will be `(Y=2xx10^(11)(N)/(m^2)`)

A

6250 J

B

0.177 J

C

0.075 J

D

0.150 J

Text Solution

AI Generated Solution

The correct Answer is:
To find the energy stored in the wire when a force is applied, we can follow these steps: ### Step 1: Understand the given data - Cross-sectional area \( A = 3 \times 10^{-6} \, \text{m}^2 \) - Original length \( L = 4 \, \text{m} \) - Increase in length \( \Delta L = 1 \, \text{mm} = 1 \times 10^{-3} \, \text{m} \) - Young's modulus \( Y = 2 \times 10^{11} \, \text{N/m}^2 \) ### Step 2: Calculate the restoring force Using the formula for restoring force \( F \): \[ F = \frac{Y \cdot A \cdot \Delta L}{L} \] Substituting the values: \[ F = \frac{(2 \times 10^{11} \, \text{N/m}^2) \cdot (3 \times 10^{-6} \, \text{m}^2) \cdot (1 \times 10^{-3} \, \text{m})}{4 \, \text{m}} \] ### Step 3: Simplify the expression Calculating the numerator: \[ 2 \times 10^{11} \cdot 3 \times 10^{-6} \cdot 1 \times 10^{-3} = 6 \times 10^{2} \, \text{N} \] Now substituting back into the force equation: \[ F = \frac{6 \times 10^{2}}{4} = 150 \, \text{N} \] ### Step 4: Calculate the energy stored The energy stored \( U \) in the wire is given by: \[ U = \frac{1}{2} F \Delta L \] Substituting the values: \[ U = \frac{1}{2} \cdot 150 \, \text{N} \cdot (1 \times 10^{-3} \, \text{m}) \] ### Step 5: Calculate the final energy Calculating the energy: \[ U = \frac{1}{2} \cdot 150 \cdot 10^{-3} = 0.075 \, \text{J} \] ### Final Answer The energy stored in the wire is \( 0.075 \, \text{J} \). ---

To find the energy stored in the wire when a force is applied, we can follow these steps: ### Step 1: Understand the given data - Cross-sectional area \( A = 3 \times 10^{-6} \, \text{m}^2 \) - Original length \( L = 4 \, \text{m} \) - Increase in length \( \Delta L = 1 \, \text{mm} = 1 \times 10^{-3} \, \text{m} \) - Young's modulus \( Y = 2 \times 10^{11} \, \text{N/m}^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY

    DC PANDEY ENGLISH|Exercise Chapter Exercise|73 Videos
  • ELASTICITY

    DC PANDEY ENGLISH|Exercise Match the columns|4 Videos
  • ELASTICITY

    DC PANDEY ENGLISH|Exercise Check point 12.2|15 Videos
  • CURRENT ELECTRICITY

    DC PANDEY ENGLISH|Exercise All Questions|469 Videos
  • ELECTROSTATICS

    DC PANDEY ENGLISH|Exercise Integer|17 Videos