Home
Class 11
PHYSICS
An indian ruber cord L meter long and a...

An indian ruber cord L meter long and area of cross-secion A metre is suspended vertically. Density of rubber is `rho` kg/ `"metre"^(3)` and Young's modulus of rubber is Y newton/ `"metre"^(2)`. IF the cord extends by l metre under its own. Weight, then extension l is

A

`(L^(2)Dg)/(2E)`

B

`(L^(2)Dg)/(E)`

C

`(L^(2)Dg)/(4E)`

D

L

Text Solution

Verified by Experts

The correct Answer is:
A

(a) Volume of the rubber cord=AL
Weight of the rubber cord =ALDg.
`therefore` Stress`=(ALDg)/(A)=LDg`
The weight of the rubber cord acts at the centre of gravity which is `(L)/(2)` from the top.
`therefore` Strain `=(l)/(L//2)=(2l)/(L)`
So, Young's modulus, E`=("Stress")/("Strain")=(LDg)/(2l//L)=(L^(2)Dg)/(2l)`
or `l=(L^(2)Dg)/(2E)`
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY

    DC PANDEY ENGLISH|Exercise Match the columns|4 Videos
  • CURRENT ELECTRICITY

    DC PANDEY ENGLISH|Exercise All Questions|469 Videos
  • ELECTROSTATICS

    DC PANDEY ENGLISH|Exercise Integer|17 Videos

Similar Questions

Explore conceptually related problems

A rubber cord of density d, Young's modulus Y and length L is suspended vertically . If the cord extends by a length 0.5 L under its own weight , then L is

A thin rod of negligible mass and area of cross section S is suspended vertically from one end. Length of the rod is L_(0) at T^(@)C . A mass m is attached to the lower end of the rod so that when temperature of the rod is reduced to 0^(@)C its length remains L_(0) Y is the Young’s modulus of the rod and alpha is coefficient of linear expansion of rod. Value of m is :

A rubber cord 10 m long is suspended vertically. How much does it stretch under its own weight (Density of rubber is 1500 kg//m, Y=5xx10 N//m,g = 10 m//s )

A wire of length l and cross-sectional are A is suspended at one of its ends from a ceiling. What will be its strain energy due to its own weight, if the density and Young's modulus of the material of the wire be d and Y?

A heavy rope is suspended from the ceiling of a room. If phi is the density of the rope, L be its original length and Y be its. Young's modulus, then increase DeltaL in the length of the rope due to its own weight is

wire of length I has a ear mass density lambda and area of cross-section A and the Young's modulus y is suspended vertically from rigid support. The extension produced in wire due to its own weight

A wire havinga length L and cross- sectional area A is suspended at one of its ends from a ceiling . Density and young's modulus of material of the wire are rho and Y , respectively. Its strain energy due to its own weight is (rho^(2)g^(2)AL^(3))/(alphaY) . Find the vqalue of alpha

A uniform rod of length 2L, area of cross - section A and Young's modulus Y is lying at rest under the action of three forces as shown. Select the correct alternatives.

Find the increment in the length of a steel wire of length 5 m and radius 6 mm under its own weight. Density of steel = 8000 kg//m^(3) and young's modulus of steel = 2xx10^(11) N//m^(2) . What is the energy stored in the wire ? (Take g = 9.8 m//s^(2))

An aluminium wire is clamped at each end and under zero stress at room temperature. Temperature of room decreases resulting into development of thermal stress & thermal strain in the wire. Cross-sectional area of the wire is 5.00 xx10^(-6)m^(2). Density of aluminium is 2.70 xx10^(3) kg//m^(3). Young’s modulus of aluminium is 7.00 xx10^(10) N//m^(2). A transverse wave speed of 100 m/s generates in the wire due to a resulting thermal strain ((Deltal)/(l)) developed in the wire. The thermal strain ((Delta l )/(l)) is: (l is original length of the wire)

DC PANDEY ENGLISH-ELASTICITY-Medical entrances s gallery
  1. A load of 4 kg is suspended from a ceiling through a steel wire of len...

    Text Solution

    |

  2. Two wires of the same length and same material but radii in the ratio ...

    Text Solution

    |

  3. The elastic potential energy of a stretched wire is given by

    Text Solution

    |

  4. A uniform cylindrical rod of length L and cross-sectional area by forc...

    Text Solution

    |

  5. The ratio of hydraulic stress to the corresponding strain is known as

    Text Solution

    |

  6. The pressure on an object of bulk modulus B undergoing hydraulic compr...

    Text Solution

    |

  7. For most of the material , Young's modulus (Y) and rigidity modulus (G...

    Text Solution

    |

  8. The following four wires of length L and radius r are made of the same...

    Text Solution

    |

  9. The Young's modulus of a rope of 10 m length and having diameter of 2 ...

    Text Solution

    |

  10. A steel wire of length l and cross sectional area A is stretched by 1 ...

    Text Solution

    |

  11. Theoretically the value of Poisson's ratio sigma lies between

    Text Solution

    |

  12. A metal ring of initial radius r and cross-sectional area A is fitted ...

    Text Solution

    |

  13. An indian ruber cord L meter long and area of cross-secion A metre is...

    Text Solution

    |

  14. The density of a metal at normal pressure is rho. Its density when it ...

    Text Solution

    |

  15. To break a wire of one meter length, minimum 40 kg wt. is required. Th...

    Text Solution

    |

  16. If Poission's ratio sigma is -(1)/(2) for a material, then the materia...

    Text Solution

    |

  17. Two blocks of masses 1 kg and 2 kg are connected by a metal wire going...

    Text Solution

    |

  18. Which one the following is not a unit of Young's modulus ?

    Text Solution

    |

  19. There is same change in length when a 33000 N tensile force is appli...

    Text Solution

    |

  20. A beam of metal supported at the two ends is loaded at the centre. The...

    Text Solution

    |