The focal lengths of a converging lens measured for violet, green and red colours of `fv'f_(G)'f_(R)` respectively. We will find
(A). `f_(R)gtf_(G)gtf_(V)`
(B). `f_(v)ltf_(R)ltf_(G)`
(C). `f_(V)gtf_(R)gtf_(G)`
(D). `f_(V)=f_(R)=f_(G)`
The focal lengths of a converging lens measured for violet, green and red colours of `fv'f_(G)'f_(R)` respectively. We will find
(A). `f_(R)gtf_(G)gtf_(V)` (B). `f_(v)ltf_(R)ltf_(G)`
(C). `f_(V)gtf_(R)gtf_(G)` (D). `f_(V)=f_(R)=f_(G)`
(A). `f_(R)gtf_(G)gtf_(V)` (B). `f_(v)ltf_(R)ltf_(G)`
(C). `f_(V)gtf_(R)gtf_(G)` (D). `f_(V)=f_(R)=f_(G)`
A
`f_(v)=f_(r)`
B
`f_(v)ltf_(r)`
C
`f_(v)gtf_(r)`
D
`f_(g)gtf_(r)`
Text Solution
Verified by Experts
The correct Answer is:
C
Topper's Solved these Questions
RAY OPTICS
DC PANDEY ENGLISH|Exercise Exercise|170 VideosRAY OPTICS
DC PANDEY ENGLISH|Exercise medical entrance special format question|23 VideosRAY OPTICS
DC PANDEY ENGLISH|Exercise Checkpoint 9.6|20 VideosNUCLEI
DC PANDEY ENGLISH|Exercise C MADICAL ENTRANCES GALLERY|46 VideosREFLECTION OF LIGHT
DC PANDEY ENGLISH|Exercise Subjective|9 Videos
Similar Questions
Explore conceptually related problems
The focal length ofa converging lens are f_v and f_r for violet and red light respectively.
The focal length of a converting lens are f_(v) and f_(r) for violet and red lights, respectively. Which of the following is correct?
If f(V) and f_(R) are the focal lengths of a convex lens for violet and red light respectively and F_(V) and F_(R) are the focal lengths of concave lens for violet and red light respectively, then we have
If f, g: R to R be defined by f(x)=2x+1 and g(x) =x^(2)-2, AA x in R, respectively. Then , find gof .
When f: R to R and g: R to R are two functions defined by f(x) = 8x^(3) and g(x) = = x^((1)/(3)) respectively and (g of ) (x) = k (f o g ) (x) , then k is
The image of a white object in with light formed by a lens is usually colored and blurred. This defect of image is called chromatic aberration and arises due to the fact that focal length of a lens is different for different colours. As R . I . mu of lens is maximum for violet while minimum for red, violet is focused nearest to the lens while red farthest from it as shown in figure. As a result of this, in case of convergent lens if a screen is placed at F_(v) center of the image will be violet and focused while sides are red and blurred. While at F_(R) , reverse is the case, i.e ., center will be red and focused while sides violet and blurred. The differece between f_(v) and f_(R) is a measure of the longitudinal chromatic aberration (L.C.A),i.e., L.C.A.=f_(R)-f_(v)=-df with df=f_(v)-f_(R) ........... (1) However, as for a single lens, (1)/(f)=(mu-1)[(1)/(R_(1))-(1)/(R_(2))] ............. (2) rArr -(df)/(f^(2))=dmu[(1)/(R_(1))-(1)/(R_(2))] ............... (3) Dividing E1n. (3) by (2) : -(df)/(f)=(dmu)/((mu-1))=omega, [omega=(dmu)/((mu-1))] "dispersive power" , .........(4) And hence, from Eqns. (1) and (4) , L.C.A.=-df=omegaf Now, as for a single lens neither f nor omega zero, we cannot have a single lens free from chromatic aberration. Condition of Achromatism : In case of two thin lenses in contact (1)/(F)=(1)/(F_(1))+(1)/(F_(2)) i.c,. -(dF)/(F^(2))=(df_(1))/(f_(1)^(2))-(df_(2))/(f_(2)^(2)) The combination will be free from chromatic aberration if dF=0 i.e., (df_(1))/(f_(1)^(2))+(df_(2))/(f_(2)^(2))=0 which with the help of Eqn. (4) reduces to (omega_(1)f_(1))/(f_(1)^(2))+(omega_(2)f_(2))/(f_(2)^(2))=0 , i.e., (omega_(1))/(f_(1))+(omega_(2))/(f_(2))=0 ........(5) This condition is called condition of achromatism (for two thin lenses in contact ) and the lens combination which satisfies this condition is called achromatic lems, from this condition, i.e., form Eqn. (5) it is clear the in case of achromatic doublet : Since, if omega_(1)=omega_(2), (1)/(f_(1))+(1)/(f_(2))=0 i.e., (1)/(F)=0 or F=infty i.e., combination will not behave as a lens, but as a plane glass plate. (2) As omega_(1) and omega_(2) are positive quantities, for equation (5) to hold, f_(1) and f_(2) must be of opposite nature, i.e., if one of the lenses is converging the other must be diverging. (3) If the achromatic combination is convergent, f_(C)ltf_(D) and as (f_(C))/(f_(d))=(omega_(C))/(omega_(D)), omega_(C)ltomega_(d) i.e., in a convergent achromatic doublet, convex lens has lesses focal legth and dispersive power than the divergent one. A combination is made of two lenses of focal lengths f and f' in contact , the dispersive powers of the materials of the lenses are omega and omega' . The combination is achromatic when :
The image of a white object in with light formed by a lens is usually colored and blurred. This defect of image is called chromatic aberration and arises due to the fact that focal length of a lens is different for different colours. As R . I . mu of lens is maximum for violet while minimum for red, violet is focused nearest to the lens while red farthest from it as shown in figure. As a result of this, in case of convergent lens if a screen is placed at F_(v) center of the image will be violet and focused while sides are red and blurred. While at F_(R) , reverse is the case, i.e ., center will be red and focused while sides violet and blurred. The differece between f_(v) and f_(R) is a measure of the longitudinal chromatic aberration (L.C.A),i.e., L.C.A.=f_(R)-f_(v)=-df with df=f_(v)-f_(R) ........... (1) However, as for a single lens, (1)/(f)=(mu-1)[(1)/(R_(1))-(1)/(R_(2))] ............. (2) rArr -(df)/(f^(2))=dmu[(1)/(R_(1))-(1)/(R_(2))] ............... (3) Dividing E1n. (3) by (2) : -(df)/(f)=(dmu)/((mu-1))=omega, [omega=(dmu)/((mu-1))] "dispersive power" , .........(4) And hence, from Eqns. (1) and (4) , L.C.A.=-df=omegaf Now, as for a single lens neither f nor omega zero, we cannot have a single lens free from chromatic aberration. Condition of Achromatism : In case of two thin lenses in contact (1)/(F)=(1)/(F_(1))+(1)/(F_(2)) i.c,. -(dF)/(F^(2))=(df_(1))/(f_(1)^(2))-(df_(2))/(f_(2)^(2)) The combination will be free from chromatic aberration if dF=0 i.e., (df_(1))/(f_(1)^(2))+(df_(2))/(f_(2)^(2))=0 which with the help of Eqn. (4) reduces to (omega_(1)f_(1))/(f_(1)^(2))+(omega_(2)f_(2))/(f_(2)^(2))=0 , i.e., (omega_(1))/(f_(1))+(omega_(2))/(f_(2))=0 ........(5) This condition is called condition of achromatism (for two thin lenses in contact ) and the lens combination which satisfies this condition is called achromatic lems, from this condition, i.e., form Eqn. (5) it is clear the in case of achromatic doublet : Since, if omega_(1)=omega_(2), (1)/(f_(1))+(1)/(f_(2))=0 i.e., (1)/(F)=0 or F=infty i.e., combination will not behave as a lens, but as a plane glass plate. (2) As omega_(1) and omega_(2) are positive quantities, for equation (5) to hold, f_(1) and f_(2) must be of opposite nature, i.e., if one of the lenses is converging the other must be diverging. (3) If the achromatic combination is convergent, f_(C)ltf_(D) and as (f_(C))/(f_(d))=(omega_(C))/(omega_(D)), omega_(C)ltomega_(d) i.e., in a convergent achromatic doublet, convex lens has lesses focal legth and dispersive power than the divergent one. Chromatic aberration of a lens can be corrected by :
The image of a white object in with light formed by a lens is usually colored and blurred. This defect of image is called chromatic aberration and arises due to the fact that focal length of a lens is different for different colours. As R . I . mu of lens is maximum for violet while minimum for red, violet is focused nearest to the lens while red farthest from it as shown in figure. As a result of this, in case of convergent lens if a screen is placed at F_(v) center of the image will be violet and focused while sides are red and blurred. While at F_(R) , reverse is the case, i.e ., center will be red and focused while sides violet and blurred. The differece between f_(v) and f_(R) is a measure of the longitudinal chromatic aberration (L.C.A),i.e., L.C.A.=f_(R)-f_(v)=-df with df=f_(v)-f_(R) ........... (1) However, as for a single lens, (1)/(f)=(mu-1)[(1)/(R_(1))-(1)/(R_(2))] ............. (2) rArr -(df)/(f^(2))=dmu[(1)/(R_(1))-(1)/(R_(2))] ............... (3) Dividing E1n. (3) by (2) : -(df)/(f)=(dmu)/((mu-1))=omega, [omega=(dmu)/((mu-1))] "dispersive power" , .........(4) And hence, from Eqns. (1) and (4) , L.C.A.=-df=omegaf Now, as for a single lens neither f nor omega zero, we cannot have a single lens free from chromatic aberration. Condition of Achromatism : In case of two thin lenses in contact (1)/(F)=(1)/(F_(1))+(1)/(F_(2)) i.c,. -(dF)/(F^(2))=(df_(1))/(f_(1)^(2))-(df_(2))/(f_(2)^(2)) The combination will be free from chromatic aberration if dF=0 i.e., (df_(1))/(f_(1)^(2))+(df_(2))/(f_(2)^(2))=0 which with the help of Eqn. (4) reduces to (omega_(1)f_(1))/(f_(1)^(2))+(omega_(2)f_(2))/(f_(2)^(2))=0 , i.e., (omega_(1))/(f_(1))+(omega_(2))/(f_(2))=0 ........(5) This condition is called condition of achromatism (for two thin lenses in contact ) and the lens combination which satisfies this condition is called achromatic lems, from this condition, i.e., form Eqn. (5) it is clear the in case of achromatic doublet : Since, if omega_(1)=omega_(2), (1)/(f_(1))+(1)/(f_(2))=0 i.e., (1)/(F)=0 or F=infty i.e., combination will not behave as a lens, but as a plane glass plate. (2) As omega_(1) and omega_(2) are positive quantities, for equation (5) to hold, f_(1) and f_(2) must be of opposite nature, i.e., if one of the lenses is converging the other must be diverging. (3) If the achromatic combination is convergent, f_(C)ltf_(D) and as (f_(C))/(f_(d))=(omega_(C))/(omega_(D)), omega_(C)ltomega_(d) i.e., in a convergent achromatic doublet, convex lens has lesses focal legth and dispersive power than the divergent one. The dispersive power of crown and fint glasses are 0.02 and 0.04 respectively. An achromtic converging lens of focal length 40 cm is made by keeping two lenses, one of crown glass and the other of flint glass, in contact with each other. The focal lengths of the two lenses are :
The image of a white object in with light formed by a lens is usually colored and blurred. This defect of image is called chromatic aberration and arises due to the fact that focal length of a lens is different for different colours. As R . I . mu of lens is maximum for violet while minimum for red, violet is focused nearest to the lens while red farthest from it as shown in figure. As a result of this, in case of convergent lens if a screen is placed at F_(v) center of the image will be violet and focused while sides are red and blurred. While at F_(R) , reverse is the case, i.e ., center will be red and focused while sides violet and blurred. The differece between f_(v) and f_(R) is a measure of the longitudinal chromatic aberration (L.C.A),i.e., L.C.A.=f_(R)-f_(v)=-df with df=f_(v)-f_(R) ........... (1) However, as for a single lens, (1)/(f)=(mu-1)[(1)/(R_(1))-(1)/(R_(2))] ............. (2) rArr -(df)/(f^(2))=dmu[(1)/(R_(1))-(1)/(R_(2))] ............... (3) Dividing E1n. (3) by (2) : -(df)/(f)=(dmu)/((mu-1))=omega, [omega=(dmu)/((mu-1))] "dispersive power" , .........(4) And hence, from Eqns. (1) and (4) , L.C.A.=-df=omegaf Now, as for a single lens neither f nor omega zero, we cannot have a single lens free from chromatic aberration. Condition of Achromatism : In case of two thin lenses in contact (1)/(F)=(1)/(F_(1))+(1)/(F_(2)) i.c,. -(dF)/(F^(2))=(df_(1))/(f_(1)^(2))-(df_(2))/(f_(2)^(2)) The combination will be free from chromatic aberration if dF=0 i.e., (df_(1))/(f_(1)^(2))+(df_(2))/(f_(2)^(2))=0 which with the help of Eqn. (4) reduces to (omega_(1)f_(1))/(f_(1)^(2))+(omega_(2)f_(2))/(f_(2)^(2))=0 , i.e., (omega_(1))/(f_(1))+(omega_(2))/(f_(2))=0 ........(5) This condition is called condition of achromatism (for two thin lenses in contact ) and the lens combination which satisfies this condition is called achromatic lems, from this condition, i.e., form Eqn. (5) it is clear the in case of achromatic doublet : Since, if omega_(1)=omega_(2), (1)/(f_(1))+(1)/(f_(2))=0 i.e., (1)/(F)=0 or F=infty i.e., combination will not behave as a lens, but as a plane glass plate. (2) As omega_(1) and omega_(2) are positive quantities, for equation (5) to hold, f_(1) and f_(2) must be of opposite nature, i.e., if one of the lenses is converging the other must be diverging. (3) If the achromatic combination is convergent, f_(C)ltf_(D) and as (f_(C))/(f_(d))=(omega_(C))/(omega_(D)), omega_(C)ltomega_(d) i.e., in a convergent achromatic doublet, convex lens has lesses focal legth and dispersive power than the divergent one. Chromatic aberration in the formation of image by a lens arises because :
If f,g,\ h are three functions defined from R\ to\ R as follows: Find the range of f(x)=x^2
DC PANDEY ENGLISH-RAY OPTICS-Checkpoint 9.7
- For the myopia defect in eye, it can be removed by
Text Solution
|
- A short sighted person can see distinctly only those objects which lie...
Text Solution
|
- Which of the following statement is correct for hypometeropia?
Text Solution
|
- A person is suffering from the defect astigmatism. Its main reason is
Text Solution
|
- Astigmatism for a human eye can be removed by using
Text Solution
|
- Presbyopia can be removed by using
Text Solution
|
- The focal lengths of a converging lens measured for violet, green and ...
Text Solution
|
- Two lenses have focal lengths f(1) and f(2) and their dispersive power...
Text Solution
|
- The rainbow formed after or during the rain is due to
Text Solution
|
- Phenomena associated with scattering is/are
Text Solution
|