Home
Class 12
MATHS
Find the dy/dx when sin x = (2t)/(1+...

Find the dy/dx when
` sin x = (2t)/(1+t^2), tan y = (2t)/(1-t^2)`

Text Solution

Verified by Experts

`sin x = (2t)/(1+t^2)` and `tan y = (2t)/(1-t^2)`
`implies x = sin^(-1) frac (2t)(1+t^2) = 2tan^(-1)t
and y = tan^(-1) frac (2t)(1-t^2) = 2 tan^(-1)t
implies y = x
dy/dx = 1`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MBD PUBLICATION|Exercise QUESTION TYPE|4 Videos
  • CONIC SECTIONS

    MBD PUBLICATION|Exercise QUESTION BANK|179 Videos
  • DETERMINATES

    MBD PUBLICATION|Exercise QUESTION BANK|176 Videos

Similar Questions

Explore conceptually related problems

Find the dy/dx when cos x = sqrt ((1)/(1+t^2)), sin y = (2t)/(1+t^2)

Find dy/dx, sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2)

sinx = 2t/1+t^(2) , tany = 2t/1-t^(2) , find dy/dx .

Find the dy/dx when x = a[cos t + log tan (t//2)], y = a sin t

Find the slope of the tangent to the curve x=a((1-t^2)/(1+t^2)) and y= (2at)/(1+t^2) at t= (1)/(sqrt3)

Find the point (S) on the curve x=(3at)/(1+t^2) , y=(3at^2)/(1+t^2) where the tangent is perependicular to the line 4x+3y+5=0.

Show that (dy)/(dx) is independent of t_ . cos x=sqrt((1)/(1+t^(2))) and siny=(2t)/(1+t^(2))