Home
Class 12
MATHS
Find the dy/dx when cos x = sqrt ((1)/...

Find the dy/dx when
`cos x = sqrt ((1)/(1+t^2)), sin y = (2t)/(1+t^2)`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MBD PUBLICATION|Exercise QUESTION TYPE|4 Videos
  • CONIC SECTIONS

    MBD PUBLICATION|Exercise QUESTION BANK|179 Videos
  • DETERMINATES

    MBD PUBLICATION|Exercise QUESTION BANK|176 Videos

Similar Questions

Explore conceptually related problems

Find the dy/dx when sin x = (2t)/(1+t^2), tan y = (2t)/(1-t^2)

Show that (dy)/(dx) is independent of t_ . cos x=sqrt((1)/(1+t^(2))) and siny=(2t)/(1+t^(2))

Find the dy/dx when x = sqrt(sin 2u), y = sqrt(cos 2u)

Find the dy/dx when x = a[cos t + log tan (t//2)], y = a sin t

Find dy/dx, sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2)

Find the slope of the tangent to the curve x=a((1-t^2)/(1+t^2)) and y= (2at)/(1+t^2) at t= (1)/(sqrt3)

Find (dy)/(dt) , when y=sin^(-1)(2sqrt(t^(2)-1)/(t^(2)))

If cosx=sqrt(1/(1+t^2)),sin y=(2t)/(1+t^2) then show that (dy)/(dx) is independent of t.