Home
Class 12
MATHS
Find the dy/dx when x = sqrt(sin 2u)...

Find the dy/dx when
` x = sqrt(sin 2u), y = sqrt(cos 2u)`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MBD PUBLICATION|Exercise QUESTION TYPE|4 Videos
  • CONIC SECTIONS

    MBD PUBLICATION|Exercise QUESTION BANK|179 Videos
  • DETERMINATES

    MBD PUBLICATION|Exercise QUESTION BANK|176 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if x=sqrt(sin2u) and y=sqrt(cos2u)

Find the dy/dx when cos x = sqrt ((1)/(1+t^2)), sin y = (2t)/(1+t^2)

Find the dy/dx when x = a[cos t + log tan (t//2)], y = a sin t

Find (dy)/(dx) when y=10^(sin x) .

Find dy/dx x=cos^(3)t/sqrtcos2t , y = sin^(3)t/sqrt cos2t

Find dy/dx if (cos x)^y = sin y

Find dy/dx if y^2 = a^(sqrt x)

Assuming the validity of the operations on the r.h.s. find dy/dt y = sqrt[[sin x + sqrt{{sin x + sqrt((sin x + ........)}])}]

Find dy/dx if y = sin y)^(sin 2x)