Home
Class 12
MATHS
Show the dy/dx is independent of t if. ...

Show the dy/dx is independent of t if.
`x = cos^(-1) frac 1(sqrt(t^2 + 1)) and y = sin^(-1) frac t(sqrt(t^2 +1))`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MBD PUBLICATION|Exercise QUESTION TYPE|4 Videos
  • CONIC SECTIONS

    MBD PUBLICATION|Exercise QUESTION BANK|179 Videos
  • DETERMINATES

    MBD PUBLICATION|Exercise QUESTION BANK|176 Videos

Similar Questions

Explore conceptually related problems

Show that (dy)/(dx) is independent of t_ . cos x=sqrt((1)/(1+t^(2))) and siny=(2t)/(1+t^(2))

In sqrt(x^2 + y^2) = tan^(-1) frac y x

Differentiate if y=cos^(-1)frac (sqrt x-1)(sqrt x+ 1)+cosec^(-1)frac (sqrt x+1)(sqrt x- 1)

Differentiate tan^(-1) frac x(1+sqrt(1-x^2))

Find (dy)/(dt) , when y=sin^(-1)(2sqrt(t^(2)-1)/(t^(2)))

Defferentiate tan^(-1) frac (2x)(1-x^2) w.r.t. sin^(-1) frac (2x)(1+x^2)

Differentiate tan^(-1) frac (sqrt(1+x^2) + sqrt(1-x^2))(sqrt(1+x^2) - sqrt(1-x^2))

If x=cos^-1(1/(sqrt(1+t^2))) , y=sin^-1(1/(sqrt(t^2+1))) then dy/dx is independent of t.