Home
Class 12
MATHS
int0^oox^2/(1+x^6)^ndx...

`int_0^oox^2/(1+x^6)^ndx`

Text Solution

Verified by Experts

`I=int_0^oox^2/(1+x^6)^ndx`
Let `x^3=tantheta`
`rArr3x^2dx=sec^2thetad theta`
`x=0rArrtheta=0` ,br> `x=oorArrtheta=pi//2`
`therefore I=1/3int_0^(pi/2)(sec^2thetad theta)/(sec^2theta)^n`
=`1/3int_0^(pi/2)cos^(2n-2)thetad theta`
=`1/3(2n-3)/(2n-2)cdot(2n-5)/(2n-4)...1/2cdotpi/2`
Promotional Banner

Topper's Solved these Questions

  • Elements of Mathematics

    MBD PUBLICATION|Exercise QUESTION BANK|48 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MBD PUBLICATION|Exercise QUESTION BANK|40 Videos

Similar Questions

Explore conceptually related problems

int_0^1x(1-x)^ndx

Integrate the following int_0^1x^7/sqrt(1-x^2)dx

int_0^2[x^2]dx

Evaluate the following integrals int_0^1x^7(1+x^8)^(1/3)dx

Evaluate int_0^3 x^2.e^(x^3) dx

Evaluate int_0^ pi x/(1+ sin x) dx

int_0^1x(1-x)^100dx

Integrate: int_0^1 xlog(1+x)dx

I=int_0^6xdx