Home
Class 12
MATHS
Show that the normals to the planes over...

Show that the normals to the planes `oversettor.(overset^i-overset^j+overset^k)=3`and `oversettor.(3overset^i+2overset^j-overset^k)=0` are perpendicular to each other.

Text Solution

Verified by Experts

Normals to the given planes are `oversettoN_(1)=i-j+k` and `oversettoN_2=3i+2j-koversettoN_1.oversettoN_2=1xx3+(-1)(2)+1xx(-1)=0 thereforeoversettoN_1botoversettoN_2i.e.` the normals are perpendicular to each other.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the planes oversettor.(2overset^i-overset^j+2overset^k)=6 and oversettor.(3overset^i+6overset^j-2overset^k)=9

What is the angle between the vectors oversetrarra=overset^i+overset^j+overset^k and oversetrarrb=2overset^i-overset^j+overset^k

What is the scalar product of the vectors oversetrarra=2overset^i+overset^j+2overset^k and oversetrarrb=overset^i-2overset^j+overset^k

If the vectors alphaoverset^i+3overset^j+overset^k and 2overset^i+overset^j+overset^k are perpendicular, what is alpha

What is the scalar projection of the vector oversetrarra=overset^i+overset^j+overset^k on oversetrarrb=2overset^i+2overset^j-overset^k

If the vectors overset^i+2overset^j+overset^k and 2overset^i+3overset^j+alphaoverset^k are perpendicular, then what is alpha ?

If oversetrarra=overset^i+2overset^j-3overset^k and oversetrarrb=3overset^i-overset^j+2overset^k then find the angle between

Show that the vectors overset^i+overset^j-2overset^k,overset^i-2overset^j+overset^k and 2overset^i-overset^j-overset^k are the sides of an equilateral triangle.

What is the value of x of the vectors 3overset^i-7overset^j-4overset^k,3overset^i-2overset^j+overset^k and overset^i+overset^j+xoverset^k

Show that the vectors 3overset^i-4overset^j-4overset^k,2overset^i-overset^j+overset^k and overset^i-3overset^j-5overset^k from a right angled tringle.