Home
Class 12
MATHS
If f(x) = sin |x| -|x| , find f'(0^+)...

If f(x) = sin |x| -|x| , find `f'(0^+)`

Text Solution

Verified by Experts

`f(x) - sin |x| -|x| f(0+)=underset(hto0)lim(f(0+h)-f(0))/h=underset(hto0)lim(sin|h|-|h|)/h=underset(hto0)lim(sinh)/h-h/h=1-1=0`
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    MBD PUBLICATION|Exercise QUESTION BANK|127 Videos
  • TRIGONOMETRIC FUNCTIONS

    MBD PUBLICATION|Exercise QUESTION BANK|267 Videos

Similar Questions

Explore conceptually related problems

If (f(x))^(n) = f(nx) , find (f'(nx))/(f'(x)) .

Find interval (s) in which the function f(x) = sin x + cos x, x in (0, pi//2) is increaing or decreasing.

If f(x)=|cos x-sinx| then find f ' ((pi)/(6))

If f(x) = int_0^xt sin t dt then find f'(x).

If f(x)=xcosx+e^(x) , then find f.(0) .

If f(x)=tan^(-1)x , then find f''(x).

If f(x)=cos^(-1)(sinx) , then find f'.(x)