Home
Class 11
MATHS
If f : R to R be defined f(x) = {(a...

If ` f : R to R ` be defined
`f(x) = {(a^(2) cos^(2) x + b^(2) sin^(2) x " if " x le 0),(e^(ex + b) " if " x gt0):}` is a
continuous function show that ` b = 2 log | a| (a ne 0)`.

Text Solution

Verified by Experts

The correct Answer is:
` rArr b = 2 log|a|` .
Promotional Banner

Similar Questions

Explore conceptually related problems

If f : R to R defined by f(x) = {{:((1+ 3x^(2) - cos 2x)/(x^(2)) , " for " x ne 0),(k , " for " x = 0 ):}

If f : R to R is defind by f(x) = {:{ ( a^(2) cos x + b^(2) sin^(2) x , xle 0) , ( e^(ax + b) , x gt 0) :} is a continuous fucntion , then

If R rarr R b e defined f(x)= {{:(a^(2)cos^(2) x+b^(2) sin^(2)x,if xle0),(e^(ax+b),if xgt0):} is a continuous function show that

If f: R to R is defined by f(x)={{:(,(1+3x^(2)-cos2x)/x^(2),"for "x ne 0),(,k,"for x=0"):}

If f:[0,infty) to R defined by f(x) = x^(2) , then f is

If f : R to R is defined by f(x) = {:{ ((cos 3x - cos x)/(x^(2) ), " for " x ne 0), (lamda , " for " x =0):} and if f is continuous at x =0 , then lamda is equal to

If f: R to R defined by f(x) =(e^(x^(2)) -e^(-x^(2)))/(e^(x^(2)) +e^(-x^(3))) , then f is

If f R to R is defined by f (x) = {{:(( 2 sin x - sin 2x)/(2x cos x ) " if " x ne 0) , ( alpha " for " x =0 ):} then the value of alpha so that f is continuous at 0 is