Home
Class 11
MATHS
Find the number of points where f(x) = ...

Find the number of points where ` f(x) = [sin x + cos x] , x in [0,2 pi]` is not continous . ([.] denotes the greatest integer function ).

Text Solution

Verified by Experts

The correct Answer is:
6 points, `x=(pi)/(2),(3pi)/(4),pi(3pi)/(2),(7pi)/(4),2pi`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x) = [ sin x+ [ tan x+ [secx ]]] , x in (0, (pi )/(4)) where [.] denotes greatest integer function is

Lt_(x to oo) ([x])/(x) (where[.] denotes greatest integer function )=

If [sinx]+[sqrt(2)cosx]=-3,x I [0,2pi] ([.] denotes the greatest integer function), then x belongs to

int_(0)^(pi) [cot x] dx , where [*] denotes the greatest integer function, is equal to

The period of the function f(x) =[6x + 7] + cos pi x - 6x , where [.] denotes the greatest integer function, is

The period of 3x - [3x] is (where [.] denote greatest integer function le x )