Home
Class 11
MATHS
Find the number of point where a) f(...

Find the number of point where
a) ` f(x) = [x] + |1- x|, - 1 ge x ge 3 `
b) ` g(x) = a^([x^(2)]) , a gt 1, 1 lt x lt 3 `
c) ` h (x) = [ 2cos x ] , x in [ 0 , 2 pi] ` is discontinuous ([.] denotes the G.I.F)

Text Solution

Verified by Experts

The correct Answer is:
`5,x=-1,0,1,2,4`
(b) `7x,= sqrt(2), sqrt(3),2,.... sqrt(8)`
(c) `8;x=0 (pi)/(3),(pi)/(2),(2pi)/(3),(3pi)/(2),(4pi)/(3),(5pi)/(3),2pi`.
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = {{:([x], if, -3 lt x le -1),(|x|, if, -1 lt x lt 1),(|[-x]|, if, 1 le x le 3):} , then {x: f(x) ge 0} =

Find the value of 'a' so that f(x) = {{:(ax + 3 " if " x lt 3 ),( 3 - x + 2x^(2) " if " x ge 3 ):} is continuous on R .

Evaluate int_(0)^(2pi) [ sin x + cos x] dx where [ ] denotes the G.I.F.

Find all points of discontinuity of f, where f is defined by f(x)={{:(x+1," if "x ge1),(x^(2)+1," if "x lt 1):}

Two functions are defined as under: f(x) = {{:(x+1, x le 1),(2x+1, 1 lt x le 2):}, g(x) ={{:(x^(2), -1 le x lt 2),( x+2, 2 le x le 3):} . Find fog and gof.

If f (x) = sin (2x ^(2) -2 [x]) for 0 lt x lt 1, then f ' ((sqrtpi)/(2))=