Home
Class 11
MATHS
The function f(x) =(xe^(1//x))/(1+e^(1//...

The function `f(x) =(xe^(1//x))/(1+e^(1//x))+sin""1/x" for "x ne 0, f(0)=0" at x=0 is `

A

continuous

B

discontinuous

C

not determined

D

none

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) =(e^(1//x^(2))/(e^(1//x^(2))-1)" for "x ne 0,f(0)=1" at x =0 is"

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x)=x sin ""1/x"for "x ne 0, f(0)=0" then at x"=0, f(x) is

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

The function f(x) =[(x-1)/(1+e^(1/(x-1))]]" for "x ne 1, f(1)=0" at x=1 is"

The function f(x)=(sqrt(1+x^(2))-sqrt(1-x^(2))/(x^(2))"for "x ne 0, f(0) =1 at x=0 is

The function f(x)=(x tan 2x)/(sin 3x sin 5x)" for "x ne 0, f(0)=2//17". At x=0 is "

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

If f(x)=x cos""1/x^(2)" for "x ne 0, f(0)=1" then at x=0, f(x) is"