Home
Class 11
MATHS
The function f (x) = a [a + 1] + b [x-1]...

The function `f (x) = a [a + 1] + b [x-1], (a ne 0,b ne 0)` where [x] is the greatest integer function is continuous at at x=1 if

A

a= 2b

B

a + b = 0

C

a= b

D

a + 2b = 0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function: f(x) = tan^(-1)[x], -pi/4 le x le pi/4 where [.] denotes the greatest integer function:

f(x)=a[x+1]+b[x-1] is continuous at x=1, there [x] denotes greatest integer functionn then

The domain of the function f(x) =[x]sin pi/[x+1] , where [] denote greatest integer function is:

The range of f(x)=(sin pi [x^(2)+1])/(x^(4)+1) is , where [.] is greatest integer function

The function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] denotes the greatest integer less or equal to x, is defined for all x in

f(x)={{:( a+(Sin[x])/(x)"," , x gt 0),(2",",x=0),(b+[(Sinx-x)/(x^(3))]",", x lt 0):} where [.] denots the greates integer function . If f(x) is continuous at x=0 then b=

The function f(x)=(1-cos ax)/(1-cos bx)"for "x ne 0, f(0)=a/b" at x= 0 is "

If f(x)=(x^(2)+1)/([x]) , ([.] denotes the greatest integer function), 1 le x lt 4 , then