Home
Class 11
MATHS
f(x) ((sinx)/(sina))^((1)/(x-a) ) " if "...

` f(x) ((sinx)/(sina))^((1)/(x-a) ) " if " x ne a ` and f(x) = k if x = a and f(x) is continuous at x = a then k =

A

` e^(tana)`

B

`e^(cota)`

C

`e^(a)`

D

`e^(1//a)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

f (x) = (sin x )/(x) , x ne 0 and f(x) is continous at x = 0 then f(0) =

f(x) = (x^(3) + x^(2) - 16 x + 20)/((x - 2)^(2)) " if " x ne 2 , = k if x = 2 , f(x) is continuous at x = 2 then

f(x) = {{:((36^(x) - 9^(x) - 4^(x) + 1)/(2sin^(2) ((x)/(4)) )" if " x ne 0),(k " if " x = 0):} is continuous at x = 0 then k =

f(x) = {:([x] + [-x] x ne 2),(" "lambda " " x = 2 ):} f(x) is continuous at x = 2 then lambda =

f(x) = (2x - sin^(-1))/(2x + tan^(-1) (x)) is continuous at x = 0 then f(0) =

If f(x)=x^(1/(x-1))" for "x ne 1 and if f is continuous at x=1 then f(1)=

If f : R to R is defined by f(x) = {:{ ((cos 3x - cos x)/(x^(2) ), " for " x ne 0), (lamda , " for " x =0):} and if f is continuous at x =0 , then lamda is equal to

If the function f(x)=(sin 3x)/(x)" for "x ne 0 and f(0)=k/2 is continuous at x=0 then k=

f(x) = {{:(((27- 2x )^(1//3)-3)/(9-3 (243 + 5x)^(1//5)) " if " x ne 0),(k " if " x = 0 ):} continuous at x = 0 then k =