Home
Class 11
MATHS
f(x) = {{:(x + asqrt(2) sinx " if "0 le ...

`f(x) = {{:(x + asqrt(2) sinx " if "0 le x lt pi//4),(2x cot x + b " if " pi//4 le x le pi//2),(a cos 2x - b sin x " if " pi//2 lt x le pi):}`
f(x) is continuous on [0, `pi` ] then (a,b) =

A

`(pi/6,pi/4)`

B

`((pi)/(6),(-pi)/(12))`

C

`((-pi)/(6),(pi)/(6))`

D

`((-pi)/(4),(pi)/(4))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = {{:(xsinx " if " 0 ltx le(pi)/(2)),((pi)/(2)sin(pi + x )" if " (pi)/(2) lt x lt pi):} then f(x) is discontinuous at

f(x) = (cos x - sinx)/(cos (2x)) , x ne (pi)/(4) is continuous on [ 0, (pi)/(2)] " then " f((pi)/(4)) =

f(x) = {{:(a tan^(-1) ((1)/(x-4)) " if " 0 le x lt 4),(btan^(-1) ((2)/(x-4)) " if " 4 lt x lt 6),(sin^(-1) (7-x) + 0 (pi)/(4)" if " 6 le x le 8):} and f(4) = pi //2 is continuous on [0,8] then (a,b) =

If 0 le x le 2 pi and |cos x| le sin x , then

f(x) = {{:((1 + |sin x|)^((p)/(|sinx|)) " if " - pi //6 lt x lt 0 ),(e^((sin 2x )/(sin3x) )" if " 0 lt x lt pi //6 ):} and f(0) = q is continuous at x = 0 then

Let f(x)=(1-tan x)/(4x-pi), x ne pi/4, x in [0,pi/2]." If f(x) is continuous in "[0,pi/4]," then "f(pi/4)is

If f(x) = {{:(1 - sqrt(2 sinx)/(pi - 4r ) " if " x ne (pi)/(4)),(a " if " x = (pi)/(4)):} continuous at (pi)/(4) then a =

If a le 3 cos x + 5 sin ( x - pi//6) le b for all x , then ( a, b) is