Home
Class 11
MATHS
f(x) = x [(e^(1//x) - e^(-1//x))/(e^(1//...

` f(x) = x [(e^(1//x) - e^(-1//x))/(e^(1//x) + e^(-1//x))] , (x ne 0)= 0 ` then f(x) is

A

continuous at x = 0

B

discontinuous at x = 0

C

continuous no where

D

discontinuous no where

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(x to oo)"Lt" (e^(1//x)-e^(-1//x))/(e^(1//x)+e^(-1//x))=

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

int (e^(x))/((e^(x)+2)(e^(x)-1))dx=

Discuss the continulity of f(x) = (e^(1/x) -1)/(e^(1/x) + 1) , x ne 0 and f(0) = 0 at x = 0 .

If f: R to R defined by f(x) =(e^(x^(2)) -e^(-x^(2)))/(e^(x^(2)) +e^(-x^(3))) , then f is

The function f(x) =(e^(1//x^(2))/(e^(1//x^(2))-1)" for "x ne 0,f(0)=1" at x =0 is"