Home
Class 11
MATHS
f(x) = (cos x - sinx)/(cos (2x)) , x ne ...

` f(x) = (cos x - sinx)/(cos (2x)) , x ne (pi)/(4)` is continuous on
` [ 0, (pi)/(2)] " then " f((pi)/(4)) = `

A

`(1)/(sqrt(2))`

B

`(-1)/(sqrt(2))`

C

`(1)/(sqrt(3))`

D

`(-1)/(sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 'a' so that If f(x) = (1 - tanx)/(4x -pi) , x ne (pi)/(4) , is continuous on (0, (pi)/(2)), " find f " ((pi)/(4)) .

Period of sinx cos ( x + (pi)/(4) ) is

If f(x) = |cos x - sin x| , then f^(1)(pi/4) =

Show that f(x) = (cos3x - cos4x)/(xsin 2x), x ne 0 , f(0) = (7)/(4) is continuous at x = 0 .

f(x) = (1 -cos (7(x-pi)))/(x - pi) is continous at x = pi " then " f (pi) =

Let f(x)=(1-tan x)/(4x-pi), x ne pi/4, x in [0,pi/2]." If f(x) is continuous in "[0,pi/4]," then "f(pi/4)is

f(x) = {{:((k cos x)/(pi-2x ), " if " , x ne (pi)/(2)),(3, "if" , x = (pi)/(2)):}"continuous at " x = (pi)/(2) " then k" =

If f(x) = sgn (cos x) , then f^(1)(pi/2) is

f(x) = {{:(x + asqrt(2) sinx " if "0 le x lt pi//4),(2x cot x + b " if " pi//4 le x le pi//2),(a cos 2x - b sin x " if " pi//2 lt x le pi):} f(x) is continuous on [0, pi ] then (a,b) =

( sin x - cos x)^(2) + cos^(2) ((pi)/(4) - x) in