Home
Class 11
MATHS
Let f(x)=(1-tan x)/(4x-pi), x ne pi/4, x...

Let `f(x)=(1-tan x)/(4x-pi), x ne pi/4, x in [0,pi/2]." If f(x) is continuous in "[0,pi/4]," then "f(pi/4)is `

A

1

B

`1/2`

C

`-(1)/(2)`

D

-1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 'a' so that If f(x) = (1 - tanx)/(4x -pi) , x ne (pi)/(4) , is continuous on (0, (pi)/(2)), " find f " ((pi)/(4)) .

f(x) = (cos x - sinx)/(cos (2x)) , x ne (pi)/(4) is continuous on [ 0, (pi)/(2)] " then " f((pi)/(4)) =

If f(x) = |cos x - sin x| , then f^(1)(pi/4) =

f(x) = {{:(x + asqrt(2) sinx " if "0 le x lt pi//4),(2x cot x + b " if " pi//4 le x le pi//2),(a cos 2x - b sin x " if " pi//2 lt x le pi):} f(x) is continuous on [0, pi ] then (a,b) =

f(x) = (1 -cos (7(x-pi)))/(x - pi) is continous at x = pi " then " f (pi) =

f(x) ={{:((1-sqrt(2)sin x)/(pi -4x),"if "x ne (pi)/(4)),("k","if "x=(pi)/(4)):} continous at x=(pi)/(4) , then K=

If f(x) = {{:(1 - sqrt(2 sinx)/(pi - 4r ) " if " x ne (pi)/(4)),(a " if " x = (pi)/(4)):} continuous at (pi)/(4) then a =