Home
Class 11
MATHS
If f(x) = {{:(1 - sqrt(2 sinx)/(pi - 4r...

If ` f(x) = {{:(1 - sqrt(2 sinx)/(pi - 4r ) " if " x ne (pi)/(4)),(a " if " x = (pi)/(4)):}`
continuous at `(pi)/(4)` then a =

A

4

B

2

C

1

D

`1//4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = {{:((k cos x)/(pi-2x ), " if " , x ne (pi)/(2)),(3, "if" , x = (pi)/(2)):}"continuous at " x = (pi)/(2) " then k" =

f(x) ={{:((1-sqrt(2)sin x)/(pi -4x),"if "x ne (pi)/(4)),("k","if "x=(pi)/(4)):} continous at x=(pi)/(4) , then K=

Lt_(x to (pi)/(4)) (cosx-sinx)/((pi)/(4)-x)=

Period of sinx cos ( x + (pi)/(4) ) is

f(x) = {{:(x + asqrt(2) sinx " if "0 le x lt pi//4),(2x cot x + b " if " pi//4 le x le pi//2),(a cos 2x - b sin x " if " pi//2 lt x le pi):} f(x) is continuous on [0, pi ] then (a,b) =

f(x) = (cos x - sinx)/(cos (2x)) , x ne (pi)/(4) is continuous on [ 0, (pi)/(2)] " then " f((pi)/(4)) =

If f(x)={{:((1-sin^(3)x)/(3 cos^(2)x),if x lt (pi)/(2)),(a,if x=(pi)/(2)),((b-(1-sinx))/(pi-2x)^(2),ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) find a and

f (x) = sin x + cos x implies f ((pi)/(4)) f ^((iv)) ((pi)/(4)) =

If f(x) = |cos x - sin x| , then f^(1)(pi/4) =