Home
Class 10
MATHS
If a^(2) = b^(2) +c^(2) , then c is ...

If ` a^(2) = b^(2) +c^(2) , ` then c is given by

A

`+ - sqrt(b^(2) +a^(2))`

B

` +- sqrt(a^(2) +b^(2))`

C

` +- sqrt( a-b) `

D

` +- sqrt( a^(2) - b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    OSWAAL PUBLICATION|Exercise TOPIC -1 ROOTS OF THE EQUATIONS ( VERY SHORT ANSWER TYPE QUESTIONS) |3 Videos
  • QUADRATIC EQUATIONS

    OSWAAL PUBLICATION|Exercise TOPIC -1 ROOTS OF THE EQUATIONS (VERY SHORT ANSWER TYPE QUESTIONS) |20 Videos
  • PROBABILITY

    OSWAAL PUBLICATION|Exercise TEXTBOOK CORNER (EXERCISE 14.2)|4 Videos
  • REAL NUMBERS

    OSWAAL PUBLICATION|Exercise TEXTBOOK CORNER ( EXERCISE 8.4 )|12 Videos

Similar Questions

Explore conceptually related problems

If a, b and c real numbers such that a^(2) + b^(2) + c^(2) = 1, then ab + bc + ca lies in the interval :

If a,b,c,d are distinct integers in an A.P. such that d=a^(2)+b^(2)+c^(2) , then find the value of a+b+c+d.

If a,b,c are in A.P. and a^(2) , b^(2) , c^(2) are in H.P. , then :

Suppose a,b,c are in A.P. and a^(2) , b^(2) , c^(2) are in G.P. If a lt b lt c and a+ b + c = ( 3)/( 2) , then the value of a is :

If a, b, c are distinct positive real numbers and a^(2)+b^(2)+c^(2)=1 , then ab+bc+ca is :

If (1 + 2i) is a root of the equation x^(2) + bx + c = 0 . Where b and c are real, then (b,c) is given by :

If a,b,c,d and p are distinct non -zero real numbers such that : ( a^(2) + b^(2) +c^(2))p^(2) - 2 ( ab + bc + cd) p + ( b^(2) + c^(2) + d^(2)) le 0 , then a,b,c,d :

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2) , is

Find the proudct (a-b-c) (a ^(2) + b ^(2) + c ^(2) - ab + bc-ca) without actual multiplication.

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}