a. Minimize `z =-3x+4y` subject to constraints. `x+2yle8` ` 3x+2yle12` `xge0, yge0` by graphical method. b. Prove that `{:abs((1,a,a^2),(1,b,b^2),(1,c ,c^2)):} = (a - b)(b-c)(c-a)`
Topper's Solved these Questions
II PUC MATHEMATICS SUPPLEMENTARY EXAM QUESTION PAPER JULY - 2017
SUNSTAR PUBLICATION|Exercise PART-C|24 Videos
II PUC MATHEMATICS P.U. BOARD LATEST MODEL QUESTION PAPER - 1
SUNSTAR PUBLICATION|Exercise PART - E|2 Videos
K-CET- MATHEMATICS - 2017
SUNSTAR PUBLICATION|Exercise MCQs|59 Videos
Similar Questions
Explore conceptually related problems
Prove that |{:(,1,a,a^(2)),(,1,b,b^(2)),(,1,c,c^(2)):}|=(a-b)(b-c)(c-a)
Minimize z=-3x+4u subject to the constraints x+2y le 8 3x+2y le 12 x ge 0, y ge 0 by graphical method.
Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)
For the LPP, maximise z=x+4y subject to the constraints x+2yle2, x+2yge8,x,yge0 .
Minimize and Maximize z=600x+400y Subject to the constraints : x+2y le 12 2x+y le 12 4x+5y ge 21 and xge0,y ge 0 graphical method.
Minimize and Maximize Z = 3x + 9y subject to the constraints x+3ylt=60 x+y gt=10 xlt=y x gt= 0 , y gt= 0 by the graphical method .