Home
Class 12
MATHS
a. Minimize z =-3x+4y subject to constra...

a. Minimize `z =-3x+4y` subject to constraints.
`x+2yle8`
` 3x+2yle12`
`xge0, yge0` by graphical method.
b. Prove that
`{:abs((1,a,a^2),(1,b,b^2),(1,c ,c^2)):} = (a - b)(b-c)(c-a)`

Answer

Step by step text solution for a. Minimize z =-3x+4y subject to constraints. x+2yle8 3x+2yle12 xge0, yge0 by graphical method. b. Prove that {:abs((1,a,a^2),(1,b,b^2),(1,c ,c^2)):} = (a - b)(b-c)(c-a) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • II PUC MATHEMATICS SUPPLEMENTARY EXAM QUESTION PAPER JULY - 2017

    SUNSTAR PUBLICATION|Exercise PART-C|24 Videos
  • II PUC MATHEMATICS P.U. BOARD LATEST MODEL QUESTION PAPER - 1

    SUNSTAR PUBLICATION|Exercise PART - E|2 Videos
  • K-CET- MATHEMATICS - 2017

    SUNSTAR PUBLICATION|Exercise MCQs|59 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(,1,a,a^(2)),(,1,b,b^(2)),(,1,c,c^(2)):}|=(a-b)(b-c)(c-a)

Minimize z=-3x+4u subject to the constraints x+2y le 8 3x+2y le 12 x ge 0, y ge 0 by graphical method.

Knowledge Check

  • For the LPP, maximise z=x+4y subject to the constraints x+2yle2, x+2yge8,x,yge0 .

    A
    `z_(max)=4`
    B
    `z_(max)=8`
    C
    `z_(max)=16`
    D
    Has no feasible solution
  • Similar Questions

    Explore conceptually related problems

    Minimise Z=3x+2y subject to the constraints, x+yge8 3x+5yle15 xge0, yge0

    Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

    Minimize and Maximize z=600x+400y Subject to the constraints : x+2y le 12 2x+y le 12 4x+5y ge 21 and xge0,y ge 0 graphical method.

    Minimize and Maximize Z = 3x + 9y subject to the constraints x+3ylt=60 x+y gt=10 xlt=y x gt= 0 , y gt= 0 by the graphical method .

    (a) Minimize and Maximize z=600x+400y Subject to the constraints : x+2yle12 2x+yle12 4x+5yge20 and xge0, y ge0 by graphical method. (b) Find the value of k, if f(x)={{:((kcosx)/(pi-2x)",",xne(pi)/(2)),(3",",x=(pi)/(2)):} is continuous at x=(pi)/(2) .

    (a) Minimze and maximize Z=5x+10y subject to the constraints x+2yle120 x+ge60 x-2yge0andxge0,yge0 , by graphical method. (b) Find the value of k, if {:(f(x)=(1-cos2x)/(1-cosx),xne0),(=k,x=0):} is continuous at x=0 .

    Prove that |{:(a-b-c, 2a, 2a), (2b, b-c-a, 2b), (2c, 2c, c-a-b):}|=(a+b+c)^(3)