Home
Class 12
MATHS
Show that sin^(-1)(2xsqrt(1-x^(2)))=2cos...

Show that `sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x, (1)/(sqrt2)le x le 1.`

Text Solution

Verified by Experts

The correct Answer is:
`2cos^(-1)x`
Promotional Banner

Topper's Solved these Questions

  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PEPER MARCH -17

    SUNSTAR PUBLICATION|Exercise PART -C|14 Videos
  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PEPER MARCH -17

    SUNSTAR PUBLICATION|Exercise PART -D|12 Videos
  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PEPER MARCH -17

    SUNSTAR PUBLICATION|Exercise PART -D|12 Videos
  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PAPER MARCH -2018

    SUNSTAR PUBLICATION|Exercise PART-E|4 Videos
  • II PUC MATHEMATICS P.U. BOARD LATEST MODEL QUESTION PAPER - 1

    SUNSTAR PUBLICATION|Exercise PART - E|2 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(2xsqrt(1-x^(2))) = 2sin^(-1)x ,

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

y = sin^(-1)(2xsqrt(1 - x^2)), -1/(sqrt2) lt x lt 1/(sqrt2)

If y = sin^(-1) (2xsqrt(1-x^(2))) + sec^(-1) (1/sqrt(1-x^(2))) then dy/dx =

If cos^(-1)x=alpha, (0 lt x lt 1) and sin^(-1)(2x sqrt(1-x^(2)))+sec^(-1)((1)/(2x^(2)-1))=(2pi)/(3) , then tan^(-1)(2x) equals

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1