Home
Class 12
MATHS
If (dy)/(dx)+1/(sqrt(1-x^2))=0, then...

If `(dy)/(dx)+1/(sqrt(1-x^2))=0`, then

A

`y+sin^-1x=c`

B

`y^2+2sin^-1 x+c=0`

C

`x+sin^-1y=0`

D

`x^2+2sin^-1y=1`.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

What is the solution of the differential equation (dy)/(dx) + sqrt((1-y^(2))/(1-x^(2))) = 0 ?

If y=cos^(-1) (2x sqrt (1-x^2)) , find dy/dx

If sqrt (1-y^2) + sqrt (1-x^2) =a(x-y) , then show that dy/dx = sqrt (frac{1-y^2}{1-x^2})

If sqrt (y+x) + sqrt (y-x) = c , then show that dy/dx = frac{y}{x} - sqrt (frac{y^2}{x^2} -1)

If x=ysqrt(1-y^(2)) , then (dy)/(dx)=

If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

If y= sin^(-1) (frac{5x+ 12 sqrt (1-x^2)}{13}) , then (dy/dx) = .......... A) 0 B) frac {-1}{sqrt (1-x^2)} C) frac {1}{sqrt (1-x^2)} D) sqrt (1-x^2)