Home
Class 11
MATHS
If the length of the tangent segment fro...

If the length of the tangent segment from the point `(5,3)` to the circle `x^2 +y^2+10x+ky+17=0` is 7, then k equals

A

-6

B

4

C

-3

D

10

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the tangent from the point (-3,8) to the circle x^2 +y^2-8x+2y+1=0 is

Answer the following:Find the length of the tangent segment drawn from the point (5,3) to the circle x^2+y^2+10x-6y-17=0

Answer the following:Find the value of k,if the length of the tangent segment from the point (8,-3) to the circle. x^2+y^2-2x+ky-23=0 is sqrt10

The length of tangent from the point (2,-3) to the circle 2x^2 +2y^2=1 is

The length of the tangent from the origin to the circle 3x^2 +3y^2-4x-6y+2=0 is

The equations of the tangents drawn from the point (0,1) to the circle x^1+y^2-2x+4y=0 are

If the ratio of the lengths of tangents drawn from the point (f,g) to the given circle x^2+y^2=6 and x^2+y^2+3x+3y=0 be 2:1 , then

The square of the length of the tangent from(3,-4) on the circle x^2+y^2-4x-6y+3=0 is

Solve the following:Find theequations of the tangents from the point A(3,2) to the circle x^2+y^2+4x+6y+8=0

If P is a point such that the ratio of the squares of the lengths of the tangents from P to the circles x^2+y^2+2x-4y-20=0 and x^2+y^2-4x+2y-44=0 is 2:3 , then the locus of P is a circle with centre