Home
Class 11
MATHS
Prove that cos((3pi)/4+x)-cos((3pi)/4-x)...

Prove that `cos((3pi)/4+x)-cos((3pi)/4-x)=``-sqrt2 sinx`

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|167 Videos

Similar Questions

Explore conceptually related problems

Prove that cos ( pi/4 +x)+cos ( pi/4 - x) = sqrt(2)cos x

prove that cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx

Prove that cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

prove the following cos(pi/4+x)+cos(pi/4-x) = sqrt2cosx

Prove that cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

Evaluate cos^2(pi/8)+cos^2((3pi)/8)

cos (2pi-x) =

Prove that cos ^(4) (pi)/(8)+cos ^(4) (3 pi)/(8)+cos ^(4) (5 pi)/(8)+cos ^(4) (7 pi)/(8)=(3)/(2)

Prove that 2sin^2((3pi)/4)+2cos^2(pi/4)+2sec^2(pi/3)=10

Prove that 2cos(pi/13)cos((9pi)/13)+cos((3pi)/13)+cos((5pi)/13)=0