Home
Class 11
MATHS
Given that tan(A+B)=(tanA+tanB)/(1-tanAt...

Given that `tan(A+B)=(tanA+tanB)/(1-tanAtanB)` if `A+B+C=0^@` prove that `tanA+tanB+tanC=tanAtanBtanC` hence prove that `tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)`

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|167 Videos

Similar Questions

Explore conceptually related problems

Given that tan(A+B)=(tanA+tanB)/(1-tanAtanB) by writing A+B+C=(A+B)+C prove that tan(A+B+C)=(tanA+tanB+tanC-tanAtanBtanC)/(1-(tanAtanB+tanBtanC+tanCtanA)

(tan x+tan y)/(1-tanxtany) =……………

Show tht tan (x-y)=(tan x-tan y)/(1+tan x tan y)

Show that tan 2 x=(2 tan x)/(1-tan ^(2) x)

prove that (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

If tanA=18/17 and tanB=1/35 prove that tan(A-B)=1

Prove that tan 3x=(3tanx-tan^3x)/(1-3tan^2x)

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

Prove that tan4x=(4tanx(1-tan^2x))/(1-6tan^2x+tan^4x)

Show that tanx tan 2x tan 3x = tan 3x-tan 2x- tan x