Home
Class 11
MATHS
Show that 1+i^2+i^4+i^6=0...

Show that `1+i^2+i^4+i^6=0`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    A N EXCEL PUBLICATION|Exercise QUESTION BANK |106 Videos
  • CONIC SECTION

    A N EXCEL PUBLICATION|Exercise QUESTION BANK|90 Videos

Similar Questions

Explore conceptually related problems

If A=[[1 , 2 , 3],[ 3, -2 , 1],[ 4, 2 , 1]] , then show that A^3-23 A-40 I=0

A=[[1,2,3],[3,-2,1],[4,2,1]] Show that A^3-23A-40I=0

Let A=[[3,1],[-1,2]] Show that A^2-5A+7I=0

prove that (-1 + i)^2 = -2i

Write the values of i^2, i^4 and i^6

If (1+i)(1+2i)(1+3i)…(1+ni)=x+iy , show that 2.5.10… (1+n^2) = x^2+y^2

If A = [[3,1],[-1,2]] ,show that A^2-5A + 7I=0 Hence, find A^(-1)

If A=[[1,3],[-2,4]] , then show that , A^2-5A+10I=0

Consider the integral I=int_0^pi(xsinx)/(1+cos^2x)dx Show that I=pi^2/4

If A=[(3,1),(-1,2)] . Show that A^2-5A+7I=0 Hence find A^4 and A^-1 .